

Discipline	STATISTICS	STATISTICS									
Course Code	UK1DSCSTA109	UK1DSCSTA109									
Course Title	DESCRIPTIVE STA	ATISTICS A	ND PROBA	BILITY							
Type of Course	DSC										
Semester	I										
Academic	100 - 199										
Level											
Course Details	Credit	Lecture	Tutorial	Practical	Total						
		per week	per week	per week	Hours/Week						
	4	3 hours	-	2 hours	5						
Pre-requisites				·							

COURSE OUTCOMES

Up on	Completion of the course, students should be	Cognitive level	PSO addressed
	able to:		
CO1	Distinguish between the various data types	Understand	PSO-1, 2
CO2	Explain the concept of scaling and identify	Understand	PSO-1,2
	their significance in practical situations		
CO3	Calculate the measures of Central	Apply	PSO-1,2,3,4
	tendency, dispersion, skewness and		
	kurtosis		
CO4	Explain the concepts of random	Understand	PSO-1,2
	experiments, sample space and different		
	types of events		
CO5	Calculate the probabilities of events using	Apply	PSO-1,2,3
	classical, statistical approaches.	Пррпу	
CO6	Understand Axiomatic approach	Understand	PSO-1,2
CO7	Determine conditional probability and		PSO-1,2,3
	apply concepts of statistical independence	Apply	
	and multiplication theorem		
CO8	Use Bayes' theorem to evaluate posterior	Apply	PSO-1,2,3
	probabilities		
CO9	Explain the concept of random variables	Understand	PSO-1,
CO10	Illustrate random variables and its	Analysa	PSO-1,2,3
	probability distributions	Analyse	

COURSE CONTENT

Module	Content	Hrs
I	Descriptive Statistics	13
	Descriptive Statistics: Data- Definition, types of data, types of scaling -	
	nominal, ordinal, interval and ratio, Central Tendency- Concept and Measures,	
	Dispersion – Concept & Measures of Dispersion, Raw and central Moments(first	
	four moments and their relationship without proof), Skewness and Kurtosis	
	(Concept and definition with problems only).	

II	Introduction to Probability	12
	Random experiments - Sample Space, Sample point; Events-algebra of events,	
	equally likely, mutually exclusive and exhaustive events (Concept only).	
	Probability : Statistical regularity, frequency definition, classical approaches	
	(numerical problems), Axiomatic approach, theorems in probability (Concepts	
	and statement of results, numerical problems), probability space.	
III	Conditional probability	10
	Conditional probability: multiplication theorem, independence of two and	
	three events, compound probability, Bayes' theorem and its applications.	
	(Concepts and statement of results, numerical problems).	
IV	Random variables	10
	Random variables – definition, discrete and continuous random variables,	
	probability mass function and probability density function, distribution function.	
	Expectation of random variables and its properties, moments, moment	
	generating function and characteristic function.(No proofs needed)	
V	Practicum	30
	Practical based on Modules I to be done using R package	

PRACTICAL/LABWORK

List of Practical worksheet

- 1. Measures of Central tendency.
- 2. Measures of Dispersion
- 3. Skewness and Kurtosis

REFERENCES

- 1. Agarwal, B.L. (2006). Basic Statistics. 4th Edition, New Age international (P) Ltd., New Delhi.
- 2. Gupta S. P. (2004). Statistical Methods. Sultan Chand & Sons, New Delhi.
- 3. Gupta, S. C., and Kapoor, V. K. (1994). Fundamental of Mathematical Statistics. Sultan Chand & Sons, New Delhi.
- 4. Kenny J. F (1947). Mathematics of Statistics Part One. 2nd Edition, D. Van Nostard Company, New Delhi-1.
- 5. Kenny J. F & Keeping E. S (1964). Mathematics of Statistics –Part Two. 2nd Edition, D. Van Nostard Company, New Delhi-1.
- 6. Mukhopadhyay, P. (1996). Mathematical Statistics. New Central Book Agency (P) Ltd, Calcutta.

Name of the Course: DESCRIPTIVE STATISTICS AND PROBABILITY Credits: 3:0:1 (Lecture:Tutorial:Practical)

 \mathbf{C} PO/PSO \mathbf{CO} Cognitive Knowledge Lectu Practi 0 Level Category re (L) cal (P) No. L PSO-1, 2 F, C CO Distinguish between Understand the various data types PO 1 Understand CO Explain the concept of PSO-1,2 F,C L scaling and identify PO 1,2 their significance in practical situations

CO 3	Calculate the measures of Central tendency, dispersion, skewness and kurtosis	PSO- 1,2,3,4 PO 1,7	Apply	С,Р	L	P
CO 4	Explain the concepts of random experiments, sample space and different types of events	PSO-1,2 PO 1,2	Understand	С	L	
CO 5	Calculate the probabilities of events using classical, statistical approaches.	PSO-1,2,3 PO 1,2	Apply	P,C	L	
CO 6	Understand Axiomatic approach	PSO-1,2 PO 1,2	Understand	F,C	L	
CO 7	Determine conditional probability and apply concepts of statistical independence and multiplication theorem	PSO-1,2,3 PO 1,2	Apply	C,P	L	
CO 8	Use Bayes' theorem to evaluate posterior probabilities	PSO-1,2,3 PO 1,2	Apply	С,Р	L	
CO 9	Explain the concept of random variables	PSO-1 PO 1,2	Understand	F,C	L	
CO 10	Illustrate random variables and its probability distributions	PSO-1,2,3 PO 1,2	Analyse	C,P	L	

F-Factual, C- Conceptual, P-Procedural, M-Metacognitive

Mapping of COs with POs:

	PS O 1	PS O 2	PS O 3	PS O 4	PS O 5	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8
CO 1	1	2				1							
CO 2	1	2				1	2				2	1	

29

CO 3	2	1	2	1	2				1	
CO 4	2	2			1	2				
CO 5	2	1	1		1	2				
CO 6	2	1			1	2				
CO 7	3	1	1		1	2				
CO 8	3	1	1		1	2				
CO 9	3				1	2				
CO 10	2	1	1		1	2				

Assessment Rubrics:

- Quiz / Assignment/ Discussion / Seminar
- Internal Examination
- Practical Evaluation
- End Semester Examinations

Mapping of COs to Assessment Rubrics :

	Internal Exam	Quiz / Assignment Discussion / Seminar	Practical Evaluation	End Semester Exam
CO 1	✓	✓		√
CO 2	✓	✓		✓
CO 3	✓	✓	✓	√
CO 4	✓	✓		✓
CO 5	✓	✓		√
CO 6	✓	✓		√
CO 7	✓	✓		√
CO 8	✓	✓		√
CO 9	✓	✓		√
CO 10	√	√		√

30

Discipline	Mathematics								
Course Code	UK2DS	UK2DSCMAT100							
Course Title	Theory	of equation	s, Different	ial Calculus	and Geometry				
Type of Course	DSC								
Semester	II								
Academic Level	100-199	9							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	3		2	5				
Pre-requisites	1. Awa	reness on po	olynomials						
	2. Know	wledge on th	ne concepts	of function	s, differentiation				
	and bas	ic geometry							
Course Summary	This co	urse include	es theory of	equations,	differential calculus,				
	polar co	o-ordinates	and conic se	ections					

Module	Unit			Contents	Hrs				
I		Differential calculus I							
	1	Related Rates, Analysis of functions - Increasing,							
				ing and Concavity, Relative Extrema excluding					
				of polynomials, Relative Maxima and minima, first					
				re test, second derivative test, geometric implications					
				plicity					
	Chapt	er2: Se	ecti	on 2.8 and Chapter 3: Section 3.1, 3.2 of Text[1]					
II				Differential calculus II	9				
	2	Abso	lute	e maxima and minima (for finite closed intervals					
		only), Applied maximum minimum problems (excluding							
		appli	cati	on to economics), Mean value theorem, Rolle's					
		Theo	ren	1					

Module	Unit	Contents	Hrs							
	Chapt	rer 3: Section 3.4, 3.5, 3.8 of Text[1]								
III		Exponential and logarithmic function	9							
	3	Exponential and logarithmic function, L'Hôpilal's Rule,								
		indeterminate forms.								
	Chapt	ter 6: Section 6.1, 6.5 of Text[1]								
IV		Parametric representation of curves	9							
	4	Parametric equation, Tangent lines to parametric curves,								
		arc length of parametric curves, polar coordinate systems,								
		relationship between polar and rectangular coordinates,								
		graphs in polar coordinates (exclude symmetry tests), family								
		of curves								
	Chapt	ter 10: Section 10.1 10.2of Text[1]								
V		Teacher designed module - suggested topics	9							
	For in	ternal assessment examinations only.								
	5	The following topics are suggested: Introduction, General								
		Properties, Solution of cubic Equations- Cardan's Method,								
		Newtons Method, Descarte's rule, absolute maxima and								
		minima on infinite intervals, absolute maxima and minima								
		on open intervals, problems involving intervals that are not								
		both finite and closed								
	I	topics can be found in Chapter 1: Sections 1.1, 1.5 of Te	xt [2],							
	Chapt	ter 3: Sections 3.4, 3.5 of Text [1]								

Topics for Practical sessions – 30 hours

1. Introducing the SAGEMATH interface, SAGE cell server; basic arithmetic involving operators +,-,/, exponentiation; functions like sin, cos, tan,e,log, sqrt, constant π

Ref: P1, or section 2.3 of P2

2. Defining and using lists, dictionaries, sets, and accessing elements in lists and dictionaries

Ref: section 5.1, 5.3, 5.4 of P3

3. Defining variables using var, defining polynomials, polynomial functions, evaluating them

Ref: P3 or section 1.4 of P4

4. diff command to find derivatives of standard functions, polynomials, including higher order derivatives

Ref: Section 3.1 of P4

5. Solving polynomial equations and equations involving standard functions

Ref: Section 2.2 of P7

6. Sketching graphs of curves using plot

Ref: Section 6.1 of P2

7. Finding maxima, minima using first and second derivative tests.

Ref: Section 4.2 of P4

8. Finding points of inflection and sketching them

Ref: Section 4.2 of P4

9. Mean value theorem – verification and demonstration via sketching the curve and tangent

Ref: P9

10. Using integrate command to compute indefinite and definite integrals

Ref: Section 3.3.4 of P2

11. Defining parametric functions, sketching the graphs

Ref: P5, Section 6.1 of P2

- 12. Find arc length of parametric curves
- 13. Plotting in polar co-ordinates

Ref: Section 3.3 of P7

- 14. Conversion between various co-ordinate systems
- 15. Finding the number of roots of a polynomial using Descartes' rule of signs
- 16. Solving cubic by Cardan's method
- 17. Finding approximate roots by Newton's method

Ref: Section 4.4 of P4

18. Sketching family of circles, rose curves

Problems for the practical examination

- 1. Defining polynomials, polynomial functions, evaluating them
- 2. Solving polynomial equations and equations involving standard functions
- 3. Sketching graphs of curves using plot with various styling options (thickness, line style, color etc)
- 4. Finding maxima, minima using first and second derivative tests.
- 5. Finding points of inflection and sketching them
- 6. Mean value theorem verification, and sketching
- 7. Plotting in polar co-ordinates
- 8. Finding the number of roots of a polynomial using Descartes' rule of signs
- 9. Sketching family of circles
- 10. Finding approximate roots by Newton's method

A record should be maintained with atleast 7 problems from the above. Each problem in the record must have a description of the problem, algorithm (step by step procedure), commands used, input given and output obtained accordingly. For the ESE, from the list of above 10 problems, the student should be able to answer two selected (from the 7 available in the record) by the examiner.

Textbooks

- 1. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley & Sons, 2012
- 2. B.S. Grewal, Higher Engineering Mathematics, 42nd Edition, Khanna Publishers, 2012.

References

- 1. Barnard and Child, Higher Algebra, Mac Millan, 2000.
- 2. Joel Hass, Maurice D. Weir, Thomas' Calculus Early Transcendentals, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 3. T. K. Manicavachagom Pillay, T. Natarajan, K.S. Ganapathy, Algebra Volume I Ananda Book Depot, 1996.
- 4. J Stewart, Calculus with Early Transcendental Functions, 7th Edition, Cengage India Private Limited, 2004.
- 5. G B Thomas, R L Finney, Calculus, 9th Edition, Addison-Weseley Publishing Company, 2004.

Resources for practical sessions

- P1. Sagemath documentation Introductory Sage Tutorial https://doc.sagemath.org/html/en/prep/Intro-Tutorial.html
- P2. Saskia Roos, Michael Jung, An Introductory Course on Sage, Lecture Notes https://www.math.uni-potsdam.de/fileadmin/user_upload/An_Introductory_Course_on_Sage.pdf
- P3. Sagemath documentation Symbolic variableshttps://doc.sagemath.org/ html/en/reference/calculus/sage/calculus/var.html
- P4. Tuan A. Le, Hieu D. Nguyen, SageMath Advice for calculus https://users.rowan.edu/~nguyen/sage/SageMathAdviceforCalculus.pdf
- P5. Sagemath documentation Parametric plots https://doc.sagemath.org/html/en/reference/plot3d/sage/plot/plot3d/parametric_plot3d.html#sage.plot.plot3d.parametric_plot3d.

- P6. P. Zimmermann *et al*, Computational Mathematics with SageMath, https://www.sagemath.org/sagebook/english.html
- P7. Gregory V. Bard, Sage for Undergraduates http://www.people.vcu.edu/~clarson/bard-sage-for-undergraduates-2014.pdf
- P8. SageMath documentation 3D Graphics https://doc.sagemath.org/html/en/reference/plot3d/index.html
- P9. Ajit Kumar, One Variable Calculus with SageMath https://ajitmathsoft.wordpress.com/wp-content/uploads/2019/07/cal_onevar_sage.pdf

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Describe algebraic techniques to solve polynomial equations and to identify conic sections	PSO2, PO1, PO2, 3, 4, 7, 8	U,E	F,P	L	
CO 2	Apply differentiation techniques to analyse extrema of functions and solving real life problems	PSO4, PO1, 2, 3, 4, 7, 8	U,An	F,P	L	
CO 3	Sketching parabola, ellipse and hyperbola, and relating polar and cartesian co-ordinates	PSO5, PO1, 2, 3, 7,8	U,E	F,P	L	
CO 4	Analysing parametric representation of curves	PSO2, PO1, 2, 3, 4, 6, 7, 8	R,An	F,P	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PS06	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	3	2	2	1	1	3	3	2	1			1	2
CO2	2	2	2	3	2	1	3	2	2	1			1	2
CO3	2	2	2	2	3	1	3	2	3	1			2	1
CO4	2	3	2	2	2	1	3	2	2	1		1	1	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	✓	✓		√
CO2	✓	√		√
CO3	✓	✓		✓
CO4	✓	✓		√

UNIVERSITY OF KERALA

Re-accredited by NAAC with A++ GRADE

Jan. 13, 2025, 6:52 a.m.

Course Registration

College Year of admission : Christian College Chengannur (102)

: Batch 2024

Semester

Discipline : FYUGP Mathematics (1037)

Course : UK2DSCMAT108 - Integral Calculus and Series

Sl.No.	MEGHA T MURUGAN DEVIKA S PILLAI KRISHNAPRIYA. S	Candidate Code 213619390763 361080016167 372690075331	FYUGP Physics FYUGP Physics FYUGP Physics
7	IEGHA T MURUGAN	213619390763	FY
	DEVIKA S PILLAI	361080016167	FΥ
	KRISHNAPRIYA. S	372690075331	FΥ
	DHYAAN C UJWAL	646838884305	FYUGP Physics

UNIVERSITY OF KERALA

Re-accredited by NAAC with A++ GRADE

Jan. 13, 2025, 6:51 a.m.

Course Registration

College Year of admission : Christian College Chengannur (102)

: Batch 2024

Semester

Discipline : FYUGP Mathematics (1037)

Course : UK2DSCMAT107 - Mathematics for Social Sciences - II

_	6 ASHIK ALHAB	6 ASHIK ALHAB 7 SHIJIMOL V S	6 ASHIK ALHAB 7 SHIJIMOL V S 8 RIYA WILSON	6 ASHIK ALHAB 7 SHIJIMOL V S 8 RIYA WILSON 9 ARUNIMA K A
443866912375	00000250000	493903386800	790108740647	790108740647 824807833923
FVIIGD Physics		Iry	ıy	ıy
מות ווייים וויים ווייים וויים ווי	RENUING	ACTIVE	ACTIVE ACTIVE	ACTIVE ACTIVE

Discipline	Mathen	natics			
Course Code	UK1DS	SCMAT100			
Course Title	Founda	tions of Ma	thematics		
Type of Course	DSC				
Semester	I				
Academic Level	100-19	9			
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week		Hours per week
	4 4 4				
Pre-requisites	1. Defii	nition and p	reliminary r	esults of ma	atrices.
	2. Unde	erstanding o	n methods t	o solve a sy	stem of
	simu	ltaneous of	equations.		
	3. Basi	c knowledge	e of various	number sys	stem.
Course Summary	number			•	ninants and matrices, quations using matrices

Module	Unit	Contents	Hrs
I		Sets -Relations - Functions	12
	1	Sets: Sets and Elements, Subsets, Venn Diagram, Set	
		Operations. Relation: Product sets, Relations, Types of	
		Relations, Equivalence Relations, Partial Ordering Relations	
		Functions: Functions, One-to-One, Onto and Invertible	
		Functions. (Chapter 1: Sections 1.2, 1.3, 1.4, Chapter 2:	
		2.2, 2.3, 2.6, 2.8, Chapter 3: 3.2, 3.3. of Text[2])	

Module	Unit	Contents	Hrs
l II		Matrices and Determinants	12
	2	Definition, Properties of Determinants and problems, Special Matrices Review of Matrix operations and Related Matrices Rank of a matrix-Elementary transformation, Equivalent matrix, Elementary matrices, Normal form (Chapter 1: Section 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7.1 to 2.7.7 of Text[1])	
III		Solution of system of equation	10
	3	Solution of Linear system equation method Cramer's Rule, Matrix Inversion Method Consistency of linear system of equation, Rouche's Theorem (Statement only), System of homogeneous equation (Chapter 2: Sections 2.9, 2.9.1, 2.9.2, 2.10 of Text[1])	
IV		Number Theory	26
	4	Mathematical induction, The division algorithm, Pigeonhole principle, divisibility relations, inclusion-exclusion principle (These topics can be found in Chapter 1 section 1.3, Chapter 2 sections 2.1, 2.5 of Text [3]. The topics from the subsection 'A Number-Theoretic Function' onwards are excluded for examination. But Theorem 2.12 and Lemma 2.25 to be discussed.)	
	6	Prime and composite numbers, infinitude of primes, GCD, linear combination of integers, pairwise relatively prime integers, the Euclidean algorithm for finding GCD the fundamental theorem of arithmetic, canonical decomposition of an integer into prime factors, LCM. (These topics can be found in Chapter 3 sections 3.1 to 3.4 of Text [3]. The subsections marked as optional, Theorems 3.1, 3.2, 3.3, 3.12, 3.14, and Lemma 3.2 are excluded for examination.) Congruences, Modular exponentiation. These topics can be found in Chapter 4 sections 4.1 and 4.2 Text [3].	
		The subsections marked as optional and 'The monkey and coconut puzzle revisited' are excluded for examination.	

Textbooks

- 1. B.S. Grewal, Higher Engineering Mathematics, 42nd Edition, Khanna Publishers, 2012
- 2. Seymour Lipschutz, Marc Lipson. Discrete Mathematics, 3rd Edition, Schaum's outline, 2007.
- 3. Thomas Koshy, Elementary Number Theory with Applications, 2nd Edition, Academic Press, 2007.

References

- 1. David M. Burton, Elementary Number Theory, Seventh Edition, McGraw-Hill, 2011.
- 2. Gilbert Strang, Introduction to Linear Algebra, 5th Edition, 2005.
- 3. G A Jones, J M Jones, Elementary Number Theory, Springer, 1998.
- 4. Lee W. Johnson, R Dean Riess, Jimmy T. Arnold, Introduction to Linear Algebra, Fifth Edition, Addison Wesley, 2019.
- 5. Seymour Lipschutz. Set Theory and Related Topics, 3rd Edition, Schaum's outline, 1998.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Describe the basic concept of set theory, determinants, Matrices and numbers	PSO1, PO1, 2, 4, 8	U	F,C	L	
CO 2	Solve system of linear equations using determinants, Matrices	PSO2, PO1, 2, 3, 4, 7, 8	Ap	P	L	
CO 3	Illustration of Mathematical Induction, Division Algorithm and Euclidean Algorithm	PSO1, PO1, 2, 3, 4, 6, 7, 8	U	F,C	L	
CO 4	Categorise functions based on the properties	PSO4, PO1	An	F,C	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PS06	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	2	1	1	2	2	2	1	3	1	1	2	2
CO2	2	3	2	2	1	1	2	3	1	2			1	2
CO3	3	2	2	1	1	1	3	2	1	3			1	1
CO4	2	2	1	3	1	1	3	1	1	1		1	1	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	✓	√		✓
CO2	✓	√		✓
CO3	✓	✓		✓
CO4	✓	✓		✓

Discipline	Mathen	natics			
Course Code	UK1DS	SCMAT108			
Course Title	Differe	ntial Calcul	us		
Type of Course	DSC				
Semester	I				
Academic Level	100-199	9			
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week		Hours per week
	4	4	-	Ī	4
Pre-requisites	Functio	ons			
Course Summary	transcer	ım problem	ctions and is, curve-sk	their appletching, ap	ial and elementary lications, derivatives, proximations, Use of vare in calculus.

Module	Unit	Contents	Hrs
I		Functions, limits and continuity	10
	1	Families of functions, inverse functions, exponential and logarithmic functions, Computing limits of functions, limits at infinity, Continuity, Intermediate value theorem and applications, Continuity of various functions. Sections 0.3,0.4,0.5, 1.2, 1.3, 1.5, 1.6 of Text I	
II		Introduction to derivatives	15
	2	The derivative of a function, Algebra of derivatives, Derivatives of various functions, The chain rule. Sections 2.2, 2.3, 2.4 2.5, 2.6 (Proofs of theorems excluded)	

Module	Unit	Contents	Hrs							
III		Techniques of differentiation								
	3	Implicit differentiation, derivatives of logarithmic, exponential and inverse trigonometric functions, related rates and local linear approximation, L'Hopital rule. Sections 2.7, 2.8, 2.9, 6.1, 6.2(Integrals involving logarithmic functions excluded), 6.3,6.5								
IV		Analysis of functions using derivatives	20							
	4	Increasing, decreasing and concavity, extremum problems, graphing polynomials, absolute maxima and minima, Rolle's theorem, Mean-value theorem Sections 3.1, 3.2, 3.4, 3.8								

Textbooks

1. H Anton, I Bivens, S Davis, Calculus, 10th Edition, John Wiley & Sons, 2012.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2004.
- 3. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understand the basic concept of functions, limit, continuity and derivatives	PSO1,2, PO1	U	F,C	L,T	
CO 2	Analyse the properties of functions using derivatives	PSO2, PO3, 4	An	F	L,T	
CO 3	Apply deferentiation techniques to solve various problems	PSO1,3, PO2, 3	U,An	С	L,T	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create)

(F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	90Sd	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	1					3							
CO2		2							1	3				
CO3	2		3					2	2					

^{(-} Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	✓	✓		✓
CO2	✓	✓		✓
CO3	✓	✓		
CO4	✓	✓		✓

Discipline	Mathen	Mathematics							
Course Code	UK1DS	UK1DSCMAT109							
Course Title	Mathen	natics for So	ocial Science	e I					
Type of Course	DSC								
Semester	I								
Academic Level	100-199	100-199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	4	-	-	4				
Pre-requisites	Basic k	nowledge o	f Mathemat	ics in Secor	ndary level				
Course Summary	This co	This course includes basic set theory, solutions of linear and quadratic							
	equatio	ns, linear pr	ogramming	problems a	and functions				

Module	Unit	Contents	Hrs								
I		Theory of sets									
	1	Finite and infinite sets, set operations									
	2	Ordered pairs, Cartesian products, Relations									
	3	Functional Relations and Functions									
	Chapt	Chapter 1: Sections 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.14, 1.15,1.16,									
	1.17										
II		Linear Equations	15								
	4	Equations and identities -Linear and quadratic equations									
	5	Solution of equations, Solutions of quadratic equations,									
		Solution of simultaneous equations									
	6 Applications										
	Chapt	er 3: Section 3.1.									
III		Linear Programming 18									

Discipline	Mathen	Mathematics							
Course Code	UK1DS	UK1DSCMAT110							
Course Title	Matrice	s and Linea	r Equations						
Type of Course	DSC	DSC							
Semester	I	I							
Academic Level	100-199								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	4	-	-	4				
Pre-requisites	Matrice	Matrices							
Course Summary		This is a brief introductory course on matrices and system of linear equations							

Module	Unit	Contents	Hrs								
I		System of linear equations and matrices									
	1	Introduction to Systems of Linear Equations, Gaussian									
		Elimination, Matrices and Matrix Operations,									
		Inverses; Algebraic Properties of Matrices, [Section 1.1]									
		to 1.4 of the Text]									
II		Further properties of matrices									
	2	Elementary matrices and method for finding inverse,									
		more on linear systems and invertible matrices, diagonal,									
		triangular and symmetric matrices, matrix transformations									
		[Section 1.5 to 1.8 of the Text]									
III		Determinants	15								
	3	Determinants by cofactor expansion, evaluating									
		determinants by row reduction, properties of determinants,									
		Cramer's rule									

Module	Unit	Tnit Contents						
IV		Euclidean vector spaces	20					
	4	Vectors in 2 space, 3 space and n-space, Norm, dot product,						
		and distance in \mathbb{R}^n , Orthogonality, the geometry of linear						
		systems, cross product						

Textbook

1. H Anton, C Rorres. Elementary linear algebra, 11th Edition, John Wiley & Sons.

References

- 1. David Poole, Linear Algebra, a modern introduction, Brooks/Cole Cengage learning
- 2. Lee W.Johnson, R. Deanriess, Jimmy T. Arnold, Introduction to Linear Algebra, 5^{th} edition, Addison Wisely

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Assignment (As)
CO 1	Understands system of linear equations	PSO1, 2, PO1	U	F,C	L,T	
CO 2	Perform various operations on matrices and determinants	PSO2, PO3, 4	An	F	L,T	
CO 3	Understand the concept of vectors in Euclidean spaces	PSO1, 3, PO2, 3	U,An	С	L,T	
CO 4	Apply matrices to solve system of linear equations	PSO1,	Ap	С	L,T	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	90Sd	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	1					3							
CO2		2							1	3				
CO3	2		3					2	2					
CO4	2		3											

^{(- -}Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	✓			
CO2	✓			
CO3	✓			
CO4	✓			✓

Discipline	Mathen	Mathematics						
Course Code	UK1M	UK1MDCMAT100						
Course Title	Numeri	cal Ability	- I					
Type of Course	MDC							
Semester	I							
Academic Level	100-199	9						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours per week			
	3	3			3			
Pre-requisites	Basic N	1athematica	l Operation	s				
Course Summary	undergo school. mathen	Basic Mathematical Operations This course is primarily meant for students who have not undergone a Mathematics course beyond their secondary school. The course is expected to improve the student's basic mathematical skills and to understand the mathematics used in their respective fields better.						

Module	Unit	Contents	Hrs					
I		HCF, LCM, Percentage and Average						
	1	Highest Common Factor, Methods of finding HCF, Least						
		Common Multiple, Methods of finding LCM, Problems						
		involving HCF and LCM. (Chapter 2 of Text [1])						
	2	Percentage, Problems involving percentage. (Chapter 5 of						
		Text [1])						
	3	Average, Problems involving average. (Chapter 6 of Text						
		[1])						
II		Ratio and Proportion, Profit and Loss	12					
	4	Ratio, Types of Ratios, Proportion, Problems involving Ratio						
		and Proportion. (Chapter 7 of Text [1])						

Discipline	Mathen	Mathematics						
Course Code	UK3DS	UK3DSCMAT200						
Course Title	Integral	Calculus a	nd Foundati	ons of Vect	or Calculus			
Type of Course	DSC							
Semester	III							
Academic Level	200-299	200-299						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week		Hours per week			
	4	4		1	5			
Pre-requisites	1.Awar	eness of Dif	ferential Ca	lculus and	Integral Calculus			
	2. Knov	wledge of va	arious co-or	dinate syste	ems in 2-dimension			
Course Summary	The cou	ırse deal wi	th identifyir	ng the appli	cations of integration			
	and vec	tor valued f	unctions					

Module	Unit	Contents	Hrs				
I		Integral Calculus I					
	1	Area between two curves, Volume by Slicing, Volume by					
		cylindrical shells. Chapter 5: Section 5.1, 5.2, 5.3 of Text					
		[1]					
II		Integral Calculus II	15				
	2	Length of the plane curve Area of surface of revolution					
		Work(done by constant force in the direction of motion only)					
		Chapter 5: Section 5.4, 5.5, 5.6 of Text [1]					
III		Vector Valued Functions I	15				
	3	Rectangular Coordinates In 3-Space; Spheres; Cylindrical					
		Surfaces, Vectors, Dot Product; Projections, Cross Product,					
		Parametric equations of lines, Planes in 3- space, Cylindrical					
		and spherical Coordinates. Chapter 11: Section 11.1 to 11.6,					
		11.8 of Text [1]					
		•					

Module	Unit	Unit Contents						
IV		Vector Valued Functions II						
	4	Introduction To Vector-Valued Functions, Calculus Of Vector-Valued Functions, Change Of Parameter; Arc Length, Unit Tangent, Normal, And Binormal Vectors, Curvature, Motion Along A Curve. Chapter 12: Section 12.1 to 12.6 of Text [1]						
Practical	1	Practical sessions can be given using suitable software like sagemath (not						
	meant	for examination purpose)						

Textbook

1. H Anton, I Bivens, S Davis. Calculus, 10th Edition, John Wiley & Sons, 2012.

References

- 1. Joel Hass, Maurice D. Weir, Thomas' Calculus Early Transcendentals, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. J Stewart, Calculus with Early Transcendental Functions, 7th Edition, Cengage India Private Limited, 2008.
- 3. G B Thomas, R L Finney, Calculus, 9th Edition, Addison-Weseley Publishing Company, 2004.

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Demonstrate applications of Integration	PSO3, PO1, 2, 3, 4, 5, 6, 7, 8	U,E	F,P	L	
CO 2	Computing area and volume using Integration	PSO2, PO1, 2, 3, 4, 5, 7, 8	U,An	F, P		
CO 3	Analysing geometry of curves and surfaces using Vector Calculus	PSO2, PO1, 2, 3, 4, 5, 6, 7, 8	U, E	F, P		
CO 4	Distinguish cylindrical and spherical co-ordinates	PSO4, PO1, 2, 3, 4, 5, 6, 7, 8	R, An	F, P		

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create)
(F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	90Sd	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1			3				3	3	2	2	1	2	2	1
CO2		3					3	3	1	1	2		2	1
CO3		3					3	2	1	1	2		2	1
CO4				3			3	2	1	1	1	2	3	1

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1		✓		
CO2	✓	✓		✓
CO3	✓	✓		✓
CO4	✓	✓		✓

Discipline	Mathen	Mathematics						
Course Code	UK3DS	SCMAT203						
Course Title	Numeri	cal Analysi	S					
Type of Course	DSC							
Semester	III							
Academic Level	200-299	9						
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours per week			
	4	4	-	1	5			
Pre-requisites	1. Diffe	erentiation	2. Integrat	ion				
Course Summary	This co	urse enable	the students	to gain a th	ourough understanding			
	of vario	ous numeric	al methods i	used for solv	ving mathematical problems			

Module	Unit	Contents	Hrs			
I	I Solution of Algebraic and Transcendental equations					
	1	Introduction, Bisection Method, Method of false position. Chapter 2: Section 2.1 to 2.3 of Text[1]				
	2	Iteration Method, Newton-Raphson method. Chapter 2: section 2.4 to 2.5 of Text[1]				
	3	Ramanujan's method, Secant method, Muller's method. Chapter 2: Section 2.6 to 2.8 of Text[1]				
II		Interpolation	15			
	4	Finite differences. Chapter 3: Section 3.3				
	5	Newton's formulae for interpolation. Chapter 3: Section 3.6 of Text[1]				
	6	Interpolation with unevenly spaced points. Chapter 3: Section 3.9 of Text[1]				

Module	Unit	Contents	Hrs
	7	Divided differences and their properties. Chapter 3: Section	
		3.10 of Text[1]	
III		Numerical Differentiation and Integration	15
	8	Numerical differentiation. Chapter 6: Section 6.2 (excluding	
		6.2.1 and 6.2.2) of Text[1]	
	9	Maximum and Minimum values of a tabulated function.	
		Chapter 6: Section 6.3 of Text[1]	
	10	Numerical integration Chapter 6: Section 6.4.1 to 6.4.4 of	
		Text[1]	
IV		Numerical Solution of Ordinary Differential equations	15
	11	Solution by Taylor's series Chapter 8: Section 8.2 of Text[1]	
	12	Picard's method of Successive Approximations. Chapter 8:	
		Section 8.3 of Text[1]	
	13	Euler's method Chapter 8: Section 8.4 of Text[1]	
	14	Runge- Kutta Methods.Chapter 8: Section 8.5 of Text[1]	
Practical	Practi	cal sessions can be given using suitable software like sagemath (not	15
	meant	for examination purpose)	

Textbook

1. S.S. Sastry, *Introductory Methods of Numerical Analysis*, Fifth edition, PHI Learning Pvt. Ltd, 2012

References

- 1. A. C. Faul, A Concise Introduction to Numerical Analysis, CRC Press, 2016.
- 2. George A Anastassiou, Razvan A Mezei, *Numerical Analysis Using Sage*, Springer, 2015.
- 3. Richard L. Burden, J. Douglas Faires, *Numerical Analysis*, Ninth Edition, Cengage Learning, 2011.
- 4. Timo Heister, Leo G. Rebholz, Fei Xue, *Numerical Analysis An Introduction*, De Gruyter, 2019
- 5. Timothy Sauer, Numerical Analysis, Third Edition, Perason Education, 2018

E- resources

1. https://www.sagemath.org/help.html

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Find the solution of algebraic and transcendental equation using numerical methods	PO 2, PSO1, 2,3	U, Ap	F,C	L	
CO 2	Apply numerical techniques to interpolate data points effectively	PO1, PSO1, 2,3	U, Ap	F,C	L	
CO 3	Apply numerical techniques for differentiation and integration	PO2, PSO1, 2,3	U, Ap	F,C	L	
CO 4	Find the solution of ordinary differential equations using numerical methods	PO2, PSO1, 2,3	U, Ap	F,C	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PS06	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	2					3						
CO2	3	3	2				3							
CO3	3	3	2					3						
CO4	3	3	2					3						

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

- Quiz/Assignment/Discussion/Seminar
- Midterm Exam

- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	√	√		
CO2	✓	√		✓
CO3	✓	√		✓
CO4	✓	✓		✓

Discipline	Mathen	Mathematics							
Course Code	UK3DS	UK3DSCMAT207							
Course Title	Applica	Applications of Integration, Special Functions and Fourier Series							
Type of Course	DSC								
Semester	III	II							
Academic Level	200-299	200-299							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week		Hours per week				
	4	4	-	-	4				
Pre-requisites	1. Integ	gration 2.	Differentiat	ion					
Course Summary		This course provides applications of integration, beta and gamma functions and Fourier series							

Module	Unit	Contents	Hrs
I		Application of Integration	18
	1	Area Between Two Curves, Volumes by Slicing; Disks and	
		Washers (Chapter 5: Sections 5.1, 5.2 of Text [1])	
	2	Volumes by Cylindrical Shells (Chapter 5: Section 5.3 of	
		Text 1)	
	3	Length of a Plane Curve, Area of revolution (Chapter 5:	
		Sections 5.4, 5.5 of Text [1])	
II		Work, Moments and Centroids	12
	4	Work (Chapter 5: Section 5.6 of Text [1])	
	5	Moments, Centers of Gravity, and Centroids (Chapter 5:	
		Section 5.7 of Text [1])	
III		The Beta and Gammma Functions	10
	6	The Factorial Function, Definition of the Gamma Function;	
		Recursion Relation (Chapter 11: Sections 11.1, 11.2, 11.3 of	
		Text [3])	

Module	Unit	Contents	Hrs
	7	The Gamma Function of Negative Numbers, Formulas	
		Involving Gamma Functions (Chapter 11: Sections 11.4,	
		11.5 of Text [3])	
	8	Beta Functions, Beta Functions in Terms of Gamma	
		Functions (Chapter 11: Sections 11.6, 11.7 of Text [3])	
IV		Fourier Series	20
	9	Basic Examples, Euler Formulas (proof is not required),	
		Convergence and Sum of a Fourier Series, (Chapter 11:	
		Section 11.1 of Text [2])	
	10	Arbitrary Period, Even and Odd Functions, Half-Range	
		Expansions: From Period 2π to any Period $p = 2l$	
		Simplifications: Even and Odd Functions, Half Range	
		Expansions(Chapter 11: Section 11.2 of Text [2])	

Textbooks

- 1. H Anton, I Bivens, S Davis, Calculus, 10th Edition, John Wiley & Sons, 2012.
- 2. Erwin Kreyszig, *Advanced Engineering Mathematics*, 10th Edition, Wiley Publishers, 2018.
- 3. Mary L Boas, Mathematical Methods in Physical Science, 3rd Edition, 2006.

References

- 1. Joel Hass, Maurice D. Weir, *Thomas' Calculus Early Transcendentals*, 12th Edition, Addison-Weseley Publishing Company, 2004.
- 2. Peter V. O. Neil, Advanced Engineering Mathematics, Thompson Publications, 2007.
- 3. J Stewart, *Calculus with Early Transcendental Functions*, 7th Edition, Cengage India Private Limited, 2008
- 4. G B Thomas, R L Finney, *Calculus*, 9th Edition, Addison-Weseley Publishing Company, 2004.

E-resourses

1. https://www.geogebra.org/m/AzVR5uU7

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Demonstrate various applications of integration	PSO 1, PO1, 6	U	F, C	L	
CO 2	Compute tangent lines to polar curves, arc length and area	PSO 2, 4, PO 6	Ap, An	P	L	
CO 3	Understand the concepts of factorial function, gamma function beta function and Fourier series	PSO 1, PO1, 6	U	F, C	L	
CO 4	Able to find Fourier series of different functions	PSO 3, 4, PO1, 2, 6	Ap, An	P	L	

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create) (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	-	ı	-	-	ı	1	_	_	_	_	2	_	-
CO2	-	2	-	3	-	ı	_	_	_	_	_	2	_	-
CO3	3	-	_	-	-	_	2	_	_	-	-	1	_	-
CO4	-	_	3	3	-	-	2	1	-	-	-	2	-	-

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

• Quiz/Assignment/Discussion/Seminar

- Midterm Exam
- Programming Assignments
- Final Exam

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	✓			✓
CO2	✓	✓		✓
CO3	✓			✓
CO4	✓	✓		✓

Discipline	Mathen	Mathematics							
Course Code	UK3DS	UK3DSEMAT200							
Course Title	Progran	nming with	LATEX and I	ython					
Type of Course	DSE								
Semester	III	III							
Academic Level	200-299	200-299							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours per week				
	4	3	0	2	5				
Pre-requisites	1. Basic computer knowledge								
Course Summary	This course provides basic skill in LaTeX and python programming								

Module	Unit	Contents	Hrs
I		Basics of Type setting using LATEX	20
	1	Simple typesetting, Fonts, Type size Typesetting Mathematics,	
	2	Single Equations (equation, equation*, split) Group of Equations (gather, gather*, align, align*, cases) Matrices and Determinants (matrix, pmatrix, bmatrix, vmatrix) Putting one over another (frac, dfrac, int, lim, sum, prod). Chapter 1: Sections 8.1, 8.3.1, 8.3.2, 8.4.2 and 8.4.4 of Text [3].	
	3	Basics of typesetting Theorems and amsthm package (Sections 9.1 to 9.2.1 of Text [1]). Do Exercise questions 4, 5, 6 and 7 of Chapter 9 of Text [2].	
II		Tables, Figures and Presentation	20
	4	Typesetting basic tables. Merge cells using \multicolumn (Chapter 7: Section 7.2 of Text [3], except the portion using \renewcommand)	

Module	Unit	Contents	Hrs
	5	Inserting pictures using Graphicx package (Chapter 12:	
		Section 12.1.1 to 12.1.3 of Text [1], except the portion on	
		pstricks)	
	6	Creating Floating Figures (Chapter 11: Section 11.1.1 of	
		Text [3])	
	7	Beamer Presentation, Thinking in terms of frames. Set	
		up a Beamer document, Enhance a Beamer presentation.	
		(Chapter 11: Sections 11.1 to 11.4 of Text [2], except the	
		portion using pstricks)	
III		The Essentials of Python	20
	8	Absolute Basics - Lists, tuples and sets - Strings - Control	
		Flow - Functions - Reading and writing files (Chapter 4, 5	
		(Sections 5.6, 5.8 need not be discussed), 6 (Section 6.5 to	
		6.9 need not be discussed),8, 9.1 to 9.5 (Section 9.3 need not	
		be discussed) and 13.1 to 13.4 of Text [4])	
IV		Working with numbers	15
	9	Basic Mathematical Operations - Working with different	
		kinds of numbers - Getting user input - Math Programmes	
		- The Programming challenges mentioned in Chapter 1 of	
		Text [1]	

Textbooks

- 1. Amit Saha, Doing Math with Python, No Starch Press, 2015.
- 2. Donald Binder and Martin Erickson, A student's guide to the study, practice and tools of modern mathematics, CRC Press, 2010.
- 3. E. Krishnan, The LaTeX Tutorial: A Primer, by The Tutorial Team, Indian TeX Users Group, Sayahna Foundation, http://www.sayahna.org, 2020.
- 4. Naomi Ceder, The Quick Python Book, Manning, 2018.

References

- 1. E Balagurusamy, Introduction to computing and problem solving using Python, Mc Graw Hill Education, 2017.
- 2. Dilip Datta, L'TeXin 24 Hours, A Practical Guide for Scientific Writing, Springer, 2017.
- 3. Hubert Partl, Irene Hyna and Elisabeth Schlegl, The Not So Short Introduction to \LaTeX Copy Copy (Fig. 22). We should be a substitute of the Not So Short Introduction to \LaTeX Copy (Fig. 22).
- 4. Kenneth A Lambert, Fundamentals of Python, First Programs, 2nd Edition, Cengage, 2019.

E- resources

- 1. https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
- 2. https://www.python.org/

Course Outcomes

CO No.	Upon completion of the course the graduate will be able to	PO/PSO	Cognitive Level	Knowledge Category	Lecture(L) Tutorial (T)	Practical (P)
CO 1	Understand the basics of LATEX and python	PSO1, PO7	U	F,C	L	P
CO 2	Create documents and programs	PSO5, PO3	Ap,C	P	L	P
CO 3	Create good quality presentations	PSO5, PO3, 4	Ap, C	P	L	P
CO 4	Apply to the subject and get more insight to the mathematical concepts	PSO2	Ap	M	L	P

(R-Remember, U-Understand, Ap-Apply, An-Analyse, E-Evaluate, C-Create)
(F-Factual, C-Conceptual, P-Procedural, M-Metacognitive)

Mapping of CO with PSOs and POs

	PSO1	PSO2	PSO3	PSO4	PSO5	90Sd	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1												3	
CO2					3				2					
CO3			-	-	3				3	3				
CO4		3												

(- -Nill, 1-Slightly/Low, 2-Moderate/Medium, 3-Substantial/High)

Assessment Rubrics

• Quiz/Assignment/Discussion/Seminar

- Midterm Exam
- Programming Assignments
- Final Exam (Theory and Practical)

	Internal Examination	Assignment	Project Evaluation	End Semester Exam
CO1	✓	✓		✓
CO2	✓	✓		✓
CO3	✓	√		
CO4		✓		