

## UNIVERSITY OF KERALA Thiruvananthapuram

### M.Sc. Zoology – Semester System

Revised syllabus (for 2013 admissions onwards)

**March 2013** 

#### **Preamble**

The University of Kerala decided to revise the syllabus of all P. G. Programmes with effect from the academic year 2013-14 as part of its continued efforts to provide the latest information to the students. Accordingly, the P. G. Board of studies in Zoology held two workshops involving representatives of the eleven colleges offering P. G. course (M. Sc. Zoology) under the University of Kerala during 15<sup>th</sup> June and 20<sup>th</sup> July 2012. After deliberations and incorporating the suggestion of external experts such as Dr. Shaju Thomas, Chairman, P. G. Board of Studies in Zoology of M. G. University, Kottayam, the syllabus was revised. The existing syllabus was updated by the addition of relevant information contents, web resources and avoiding duplication with the existing U G Syllabus, as far as possible. The UGC-CSIR NET syllabus was also taken into consideration. Similarly, the decision of the University Grants Commission banning the use of animals for dissections was considered while designing the practical experiments.

Four faculty members were selected as coordinators of the four semesters in the meeting held on 15<sup>th</sup> June, 2012:

Semester – I – Dr. Kunhikrishnan, University College, Thiruvananthapuram

Semester – II – Dr. Vijayamohan, BJM Govt. College, Chavara

Semester – III – Dr. G. Nagendra Prabhu, S. D. College, Alleppey

Semester – IV – Dr. Indira B, S. N. College, Cherthala

During the meeting held on 20<sup>th</sup> July, 2012, the chairman suggested that 2 of the existing semester coordinators should oversee the compilation of the entire syllabus. Consequently Dr. B. Indira and Dr. G. Nagendra Prabhu were entrusted with the overall coordination. The syllabi, prepared by the teachers assigned and compiled by the semester coordinators were circulated among the participants by email and feedback incorporated, as recieved. The draft syllabus was discussed and approved by the P. G. Boad of Studies held on 13th March 2013.

The Chairman and Members of the P. G. Board of Studies would like to place on record their gratitude to the entire faculty who took part in the discussion and contributed to the design of the syllabus, which will be effective from the academic year 2013-14. Comments &, suggestions for improvement are welcome.

Thiruvananthapuram

Dr. Subash Peter
Chairman PGBOS in Zoology &
Head, Department of Zoology,
University of Kerala

#### **General Instructions**

- 1. Study of local fauna is to be made compulsory and included as part of field visit, as applicable.
- 2. The Practical Record valuation is to be done by external examiners as the present system of Internal Valuation is making the students take it lightly.
- 3. Web resources, CDs, appropriate software etc should be used as far as possible.
- 4. The Project should be given importance. Name of the supervising teachers is to be included in the dissertation. The project should be valued by the examiners who conduct the viva voce.
- 5. The topics for project should be decided during the beginning to the 3<sup>rd</sup> semester and the student should present a brief review and proposed methodology towards the middle of the semester in an internal presentation in the Department, involving all students and teachers.
- 6. A final departmental level presentation based on LCD/OHP/Laptop should be made at the end of the 4<sup>th</sup> semester, including all students and teachers.
- 7. A presentation using LCD/OHP/Laptop before the external examiners during the viva voce which will be the basis of awarding marks.
- 8. 25 marks is allotted for viva voce and 75 for the project report as per guidelines.

#### **UNIVERSITY OF KERALA**

#### M.Sc. Zoology – Semester System

**Revised Syllabus, Course Structure & Mark Distribution** 

|           |             | -                     | Distribution | stribution Instructiona Durat |          | Duration | Maximum Marks    |                  |                   |
|-----------|-------------|-----------------------|--------------|-------------------------------|----------|----------|------------------|------------------|-------------------|
| Sem       | Paper       | Title                 | of hours /   | hou                           | ırs/week | of ESA   |                  |                  |                   |
| ester     | Code        |                       | semester     | L                             | Р        | (Hrs)    | CA I             | ESA T            | otal              |
|           |             | Systematics &         |              |                               |          |          |                  |                  |                   |
|           | ZO 211      | Evolutionary          | 100          | 5                             | -        | 3        | 25               | 75               | 100               |
|           |             | Biology               |              |                               |          |          |                  |                  |                   |
| 1         | ZO 212      | Biochemistry          | 100          | 5                             | -        | 3        |                  |                  |                   |
| 1         |             |                       |              |                               |          |          | 25               | 75               | 100               |
|           | Z0 213      | Biophysics, Instrume  |              |                               |          |          |                  |                  |                   |
|           |             | & Computer            | 100          | _                             |          | 3        | 25               | 75               | 100               |
|           | Z0 214      | Science<br>Practical  | 100<br>120   | 5                             | 10       | 4        |                  |                  |                   |
|           | 20 214      | Practical             | 120          | -                             | 10       | 4        | 25               | 75               | 100               |
|           | Total for S | 1                     | 450*         | 15                            | 10       | -        | 100              | 300              | 400               |
|           | 100011010   | Advanced              |              |                               |          |          |                  |                  | 1.55              |
|           | ZO 221      | Physiology            | 100          | 5                             | -        | 3        | 25               | 75               | 100               |
| 2         |             | & Functional          |              |                               |          |          |                  |                  |                   |
|           |             | Anatomy               |              |                               |          |          |                  |                  |                   |
|           | ZO 222      | Genetics, Quantitativ | 100          | 5                             | -        | 3        |                  |                  |                   |
|           |             | Analysis &            |              |                               |          |          | 25               | 75               | 100               |
|           |             | Research Methodolo    |              |                               |          |          |                  |                  |                   |
|           | Z0 223      | Cell &                |              |                               |          | 2        | 25               | <b></b>          | 100               |
|           |             | Molecular<br>Biology  | 100          | 5                             |          | 3        | 25               | 75               | 100               |
|           | Z0 224      | Practical             | 120          | -                             | 10       | 4        |                  |                  |                   |
|           | 20 224      | Fractical             | 120          | -                             | 10       | 4        | 25               | 75               | 100               |
|           | Total for S | 5 2                   | 450*         | 15                            | 10       | -        | 100              | 300              | 400               |
|           |             | Microbiology &        |              |                               |          |          |                  |                  |                   |
| _         | ZO 231      | Biotechnology         | 100          | 5                             | -        | 3        | 25               | 75               | 100               |
| 3         | ZO 232      | Ecology, Ethology     | 100          | 5                             | -        | 3        |                  |                  |                   |
|           |             | & Biodiversity        |              |                               |          |          | 25               | 75               | 100               |
|           | 70 222      | Conservation          |              |                               |          |          |                  |                  |                   |
|           | Z0 233      | Immunology & Advanced |              |                               |          | 3        | 25               | 75               | 100               |
|           |             | Dev. Biology          | 100          | 5                             | _        | 3        | 25               | /5               | 100               |
|           | Z0 234      | Practical             | 120          | -                             | 10       | 4        |                  |                  | †                 |
|           |             |                       |              |                               |          | •        | 25               | 75               | 100               |
|           | Total for S | 3                     | 450*         | 15                            | 10       | -        | 100              | 300              | 400               |
|           |             | Special Paper 1       |              | İ                             |          |          |                  |                  |                   |
|           | ZO 241      |                       | 100          | 8                             | -        | 3        | 25               | 75               | 100               |
| 4         | ZO 242      | Special Paper 2       | 100          | 7                             |          | 3        |                  |                  |                   |
|           |             |                       |              |                               |          |          | 25               | 75               | 100               |
|           | Z0 243      | Special Paper         | 100          |                               | _        | 2        | 25               |                  | 100               |
|           | 70.244      | Practical 1           | 100          | -                             | 5        | 3        | 25               | 75               | 100               |
|           | Z0 244      | Special Paper         | 120          | -                             | 5        | 4        | 25               | 75               | 100               |
|           | Total for S | Practical 2           | 450*         | 15                            | 10       | -        | 25<br><b>100</b> | 75<br><b>300</b> | 100<br><b>400</b> |
|           | ZO 201      | Project               | 430          | 12                            | 10       | -        | 25               | 75               | 100               |
|           | 20 201      | i i Ojece             | _            | _                             | _        | _        | marks            | marks            | 100               |
|           | ZO 202      | Comprehensive         |              |                               |          |          | marks            | marks            |                   |
|           | <b></b>     | Viva Voce             |              |                               |          |          | -                | 100              | 100               |
| <b>——</b> |             | Grand Total           | -            | -                             | -        | -        | 400              | 1400             | 1800              |

L – Lecture, P – Practical; T – Tutorial; CA Continuous Assessment; ESA – End Semester

Assessment;
\* Tutorial 30 hours per week

# UNIVERSITY OF KERALA M.Sc. Zoology – Semester System Revised syllabus (2013)

## Semester I Zoo 211 Systematics and Evolutionary Biology Total 100 hours (50 + 50 hrs)

#### **Systematics**

#### Module 1.Definition and basic concepts of systematics and taxonomy- 5 hrs

- 1.1. Historical resume of systematics
- 1.2. Importance and application of systematics in biology
- 1.3. Material basis of systematics

#### Module 2 Taxonomic tools and techniques

15 hrs

- 2.1.Taxonomic Procedures-collection, preservation, curetting and process of identification.
- 2.2. Taxonomic characters of different kinds- quantitative and qualitative analysis of variation, Process of typification, different zoological types (holotype, paratype etc) and their significance.
- 2.3. Taxonomic keys- different kinds of taxonomic keys, their merits and demerits
- 2.4. Systematic publications- preparation of taxonomic publications
- 2.5. International code of zoological nomenclature, its operative principles. Implication and application of important rules
- 2.6 Zoological nomenclature formation of scientific names of various taxa (Homonymy and Synonymy)

#### Module 3. Taxonomic characters and dimensions of speciation 15 hrs

- 3.1. Taxonomic characters- different kinds, origin of reproductive isolation, biological mechanism genetic incompactibility
- 3,.2. Dimentions of speciation- types of lineage changes. Production of additional lineage.
- 3.3. Species concept- species category, different species concepts, sub species, deme and other intra specific categories, hierarchy of categories

#### Module 4. Trends in systematic

15 hrs

- 4.1.Chemotaxonomy
- 4.2 Cytotaxonomy
- 4.3. Molecular systematics
- 4.3.1. Recent trends based on proteomics and genomics
- 4.3.2. DNA bar coding and Barcoding of life
- 4.3.3. Phylogenetic trees

#### **Evolutionary Biology (50 Hours)**

#### Module 5 Cosmic evolution and origin of life

5 Hours

- 5.1. Cosmic evolution: origin of the universe, matter-time-space continuum. Theory of oscillating universe. Origin of galaxies, stellar systems, planets and earth
- 5.2. Origin of life -Physical basis of life, extra terrestrial life.

#### Module 6 Molecular evolution

15 Hours

- 6.1. Gene evolution
- 6.2. Evolution of gene families, molecular drive
- 6.3. Aminoacid sequence divergence in proteins
- 6.4. Nucleotide sequence divergence in DNA
- 6.5. Molecuar clocks
- 6.6. Ancient DNA

#### Module 7 Biochemical and genomic evolution

15Hours

- 7.1. The evolutionary history of proteins and concepts of molecular clock
- 7.2. Outline of origin of prokaryotic and eukaryotic genomes
- 7.3. The C Value paradox
- 7.4. Evolutionary history of neural integration
- 7.5. Evolution of endocrine systems, Hormones and evolution

#### **Module 8 Origin of Higher categories**

15 Hours

- 8.1. Origin of metazoa, Theories of origin
- 8.2. Origin, evolution and extinction of Trilobites
- 8.3. Origin and evolution of vertebrate groups- Pisces, Amphibia, Reptilia, Aves and mammals
- 8.4. Phylogenetic gradualism and punctuated equilibrium
- 8.5. Micro and macro evolution
- 8.6. Stages in Primate Evolution- Prosimii, Anthropoidea and Hominids. Factors in human origin-Hominid fossils.
- 8.7. Cytogenetic and Molecular basis of origin of man-African origin of modern man- Mitochondrial Eve, Y chromosomal Adam, early migration, hunter-gatherer societies.
- 8.8. Evolution of human brain- communication, speech and language. Evolution of culture.

#### References:

Alfred J.R.B and Ramakrishna.2004. *Collection, Preservation and Identification of Animals*. Zoological Survey of India Publications.

Benton, M.J. 2005 (3<sup>rd</sup> edn). Vertebrate Paleontology. Blackwell Publishing Com. Oxford, Uk

Campbell, N.A and J.B. Reece .2009. Biology (8th edn). Benjamin Cummings Publ. NY, USA

David, M. H, Craig Moritz and K.M. Barbara.1996. *Molecular Systematics*. Sinauer Associates, Inc.

Hickman Jr, Cleveland, Larry Roberts, Susan Keen, Allan Larson, David Eisenhour. 2011. *Animal Diversity*. McGraw-Hill Companies, Inc. NY

Kapoor, V.C. 1991. Theory and Practice of Animal Taxonomy. Oxford and IBH Publishing Co., Pvt. Ltd. New Delhi.

Margulis,Lynn and M.J.Chapman(4<sup>th</sup> edn.). *Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth*.W.H.Freeman &Company,USA

Mayr, E. 1969. Principles of Systematic Zoology. McGraw Hill Book Company, Inc., NY.

Mayr, E. 1997. This is Biology: The Science of Living world. Universities Press Ltd.

Narendran, T.C. 2008. An introduction to Taxonomy. Zoological survey of India.

Pat Willmer .1996. *Invertebrate Relationships-patterns in animal evolution*. Cambridge University Press

Rupert E.Edward., R.S.Fox and R.D.Barnes.2006. *Invertebrate Zoology:* 

A Functional Evolutionary Approach. Thomson/Cole, Singapore Simpson:

Waterman, A.J. 1971. Chordate Structure and Function. Macmillan Co. London

Winston, J.E.2000. *Describing species: Practical taxonomic procedures for biologists*. Columbia University Press, Columbia

Young, J.Z. 1950. Life of Vertebrates. Clarendon Press, Oxford, UK

Arthur, W. 2011. Evolution – A Developmental Approach. Wiley-Blackwell, Oxford, UK Benton, M.J. 2005 (3<sup>rd</sup> edn). Vertebrate Paleontology. Blackwell Publishing Com. Oxford, Uk

Camilo J.Cela - Conde and Francisco J. Ayala. 2007. *Human Evolution-Trails from thePast*. Oxford University Press. Oxford ,UK

Campbell.B.G.2009. Human Evolution. Transaction Publishers, NJ, USA

Charles W. Fox and Janson B.Wolf . 2006. *Evolutionary Genetics-Concepts and Case Studies*. Oxford University Press, NY. USA

Carroll, SB. 2005. Endless Forms Most Beautiful: The New Science of Evo-Devo. WW Norton, New York

Cleveland P.Hickman, Jr., Larry S. Roberts and Allan Larson. 2001. *Integrated Principles of Zoology*. (11<sup>th</sup> edn). McGraw-Hill, NY, USA

Darwin, C.D. 1859. *On the Origin of Species by Means of Natural Selection*. John Murray, London.

Dan, G. and Li, W.H. 2000. *Fundamentals of Molecualr Evolution*. (2<sup>nd</sup>edn). Sinauer Associates Inc. MA, USA

Elliott, Sober. 2008. Evidences and Evolution: The logic behind the science. Cambridge University Press, UK

Futuyma, D.J.1986. Evolutionary Biology (2<sup>nd</sup> edn). Sinauer Associates Inc. MA, USA

Gould, S,J. 2002. The Structure of Evolutionary Theory. Harvard University Press, MA, USA

Hall, B.K and Hallgrimsson, B. 2008. *Strickberger's Evolution*(4<sup>th</sup> edn). Jones and Bartlett Pub.London, UK

Hall, B.K. and Olsen, W. M., (Ed). 2007. *Keywords and Concepts in Evolutionary Developmental Biology*. Discovery Publishing House, New Delhi,

Hall, B.K., Pearson, R. and Muller, G.B. 2003. *Environment, Evolution and Development: Toward a Synthesis*. MIT Press, Cambridge MA, USA

Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press

Margulis, L and Michael J. C.1998. *Kingdoms & Domains: An Illustrated Guide to the Phyla of Life on Earth* (4<sup>th</sup> edn). W. H. Freeman and Company,USA Niles Eldredge.2000. *Life on earth: an encyclopedia of biodiversity, ecology and evolution* (Vol.1&II). ABC-CLIO, Inc. CA, USA

Richard E. M and Levin, R B.1988. *The Evolution of sex: an examination of current ideas*. Sinauer Associates Inc. MA, USA

Rupert E.Edward., R.S.Fox and R.D.Barnes.2006. *Invertebrate Zoology:* 

A Functional Evolutionary Approach. Thomson/Cole, Singapore

Stearns C.S.1987. The evolution of sex and its consequences. Birkhäuser, Basel, Switzerland Strickberger, M.W. 2005. *Evolution*. Jones and Bartett Publishers, London.

West- Eberhard M.J. 2003. *Developmental Plasticity and Evolution*. Oxford University Press, Oxford, UK

Web Resources

http://www.talkorigins.org

http://www.ucmp.berkely.edu

http://www.academicearth.org

#### ZO 212 BIOCHEMISTRY

#### Module I. Introduction

6 hrs.

100 Hours

- 1.1 Atoms, molecules, intermolecular and intramolecular interaction
  Bonds- covalent and electrovalent bonds, ionic bond, hydrogen bond.
- 1.2 Water: Biological importance, pH and Acid base balance. Buffers: Biological importance.
- 1.3 Unique solvent properties , electrolytic dissociation in to cations and anions, Henderson-Hasselbalch equation

#### Module 2. Carbohydrates

12 hrs.

- 2.1 Classification and nomenclature
- 2.1.1. Monosaccharides:, Biological importance, Structural representations of sugars- Acetal and hemiacetal, ketal and hemiketal linkages, Glucose, fructose, galactose, mannose and ribose. Isomerism Structural isomerism and stereoisomerism, optical isomerism, Epimerism and Anomerism.
- 2.1.2. Reactions of monosaccharides: Oxidation, reduction, ester formation, Osazone formation. Glycosidic bond.
- 2.1.3. Disaccharides: Sucrose, Lactose, Maltose, Isomaltose, Cellobiose and Trehalose.
- 2.1.4. Polysaccharides: Homopolysaccharides- Starch, glycogen, cellulose, Chitin, Dextrans, Inulin, Pectin. Heteropolysaccharides- Hyaluronic acid, Heparin, Chondroitin sulphate, Keratan sulphate, Dermatan sulphate and Agar-agar. Glycoproteins and Mucoproteins.

Module 3. Proteins 10 hrs.

- 3.1.1. Aminoacids: Structure, classification and properties of amino acids. pK value and isoelectric point of amino acids. Peptide and peptide synthesis. Reactions (due to carboxyl group, amino group and side chains). Colour reactions of amino acids and proteins
- 3.2.1. Proteins structure and Classification-Primary structure of protein (eg. insulin)
- 3.2.2. Secondary structure- Alpha helix, Collagen helix, Beta pleated sheet, Ramachandran angles and Ramachandran map.
- 3.2.3. Fibrous proteins- examples (Keratin, Collagen, Elastin, Resilin, Fibrous muscle proteins). Chaperons.
- 3.2.4. Tertiary structure- Globular protein- eg Myoglobin.
- 3.2.5. Quaternary structure eg Haemoglobin
- 3.2.6. Tissue protein in health and diseases, -Collagen, structure and synthesis, abnormal collagens, elastin, keratins, muscle proteins, lens proteins and cataract

#### Module 4. Lipids 10 hrs.

- 4.1.1. Classification of lipids: Simple, compound and derived lipids. Biological importance of lipids.
- 4.1.2. Fatty acids: classification, nomenclature.

- 4.1.3. Simple fats: Triacylglycerol (Triglycerides) Physical properties. Reactions- Hydrolysis, Saponification, Rancidity. Acid number, Saponification number, Iodine number oxidation, Ketosis, *Reichert-Meissl*-Wollny value
- 4.1. 4.Compound lipids: Phospholipids- Lecithin, Phosphatidyl inositol, Cephalins, Plasmologens. Glycolipids, Sphingolipids
- 4.1.5. Steroids: Biologically important steroids-cholesterol, Vitamin D, Bile acids, Ergosterol, Terpenes. Prostaglandins- Structure, types, synthesis and functions.
- 4.1.6. Lipoproteins.

#### Module 5. Nucleic Acids

8 hrs.

- 5.1.1Structure of nucleic acids and nucleotides: Structural organization of DNA (Watson Crick model) Characteristic features of A, B, C and Z DNA. Structural organization of tRNA and microRNA stability of proteins and nucleic acids
- 5.1.2. Protein-nucleic acid interactions. Electrostatic interaction, hydrogen bonding stacking interactions.
- 5.1.3.DNA binding proteins- DNA regulatory proteins, folding motifs, finger motifs, Zipper motifs, conformation flexibilities.
- 5.1.4. Biological roles of nucleotides and nucleic acids.

#### Module 6. Enzymes

10 hrs.

- 6.1.1.Classification- (I.U.B. system) co-enzymes, iso-enzymes, ribozyme.
- 6.1.2. Enzyme specificity.
- 6.1.3.Mechanism of action of enzymes. Formation of enzyme substrate complex. Various theories.
- 6.1.4. Enzyme kinetics: Michaelis-Menten equation. Km value and its significance . Enzyme velocity and factors influencing enzyme velocity. Enzyme inhibition- suicide inhibition and feedback inhibition.
- 6.1.5.Enzyme regulation: Types of regulation, Allosteric regulations- Key enzymes, Covalent modification.

#### Module 7. Carbohydrate Metabolism

8 hrs.

7.1.1.Major metabolic pathways: Glycolysis – Fate of pyruvate.

Citric acid cycle and its significance; Oxidative & substrate level phosphorylation. Pentose phosphate pathway (self study).

- 7.1.2. Gluconeogenesis, Cori cycle
- 7.1.3. Glycogen metabolism: Glycogenesis, Glycogenolysis, adenylate cascade system Ca<sup>+2</sup> Calmodulin-sensitive phosphorylase kinase. Regulation of glycogen synthesis
- 7.1.4 Inborn errors associated with carbohydrate metabolism. Glycogen storage diseases, Lactose intolerance, Galactosuria
- 7.1.5 Factors maintainig blood glucose, Normal plasma glucose level, OGT T oral glucose tolerance test

#### Module 8. Metabolism of Proteins, Amino acids and nucleic acids

10 hrs.

- 8.1.1.Amino acid metabolism: Deamination, Transamination and Trans-deamination, decarboxylation
- 8.1.2. Formation and disposal of ammonia. Urea cycle.
- 8.1.3. Fate of carbon skeletons of aminoacids: glucogenic, ketogenic, partly glucogenic and ketogenic with examples.
- 8.1.4. Synthesis of biologically significant compounds from different aminoacids with special reference to glycine, glutamic acid, phenylalanine, tyrosine and tryptophan.
- 8.1.5. Catabolism of purines and pyrimidines
- 8.1.6. Heme synthesis and break down- Structure, biosynthesis, porphyrins, bilirubin metaboloism, plasma bilirubin, juandice

#### Module 9. Metabolism of Lipids

6 hrs.

- 9.1.1.Beta oxidation, alpha oxidation and omega oxidation of fatty acids.
- 9.1.2. Formation of ketone bodies, ketosis and keto acidosis
- 9.1.3 De novo synthesis of fatty acids and fatty acid metabolism
- 9.1.4 Biosynthesis and regulation of cholesterol, Metabolism of cholesterol.
- 9.1.5 Metabolism of Triglycerides.

#### Module 10. Energy metabolism

8 hours

- 10.1. Energy rich compounds and their biological significance
- 10.2.Biological oxidation- Mitochondrial electron transport, oxidative phosphorylation, ATP synthesis, Chemi-osmotic theory

#### **Module 11.Detoxification**

3 hours

- 11.1. Formation of toxic compounds in the body
- 11.2. Detoxification oxidation, reduction, hydrolysis and conjugation

#### Module 12 Free radicals and anti oxidants

3 hours

- 12.1. Free radicals and antioxidants, Generation of free radicals. Reactive oxygen species. Damage produced by free radicals, Free radical scavenger systems.
- 12.2. Lipid peroxidation. Preventive antioxidants.

#### Module 13. Biochemistry of aging

3 hours

- 13.1. Cellular aging
- 13.2. Diseases associated with aging e.g. Alzheimer's.
- 13.3. Prions, Apoptosis

#### **Module 14 Clinical biochemistry**

3 hours

- 14.1. Introduction to clinical biochemistry
- 14.2. Analysis of body fluids
- 14.3. Examples of diseases (Diabetes etc)

#### **REFERENCES**

Creighton, T.E. *Protein Structure and Molecular Properties*. W.H. Freeman & Co, NY Deb, A.C.2004. *Fundamentals of Biochemistry*. New Central Book Agency (P) Ltd. New Delhi Elliott, W.H & .C. Elliott. 2003. *Biochemistry & Molecular Biology*. Oxford University Press, UK

Eric E. Conn, Paul K. Stumpf, George Bruening, Roy H. Doi. 2007. *Outlines of Biochemistry*. (5<sup>th</sup> edn.) John Wiley & Sons, Inc.

Garret, R.H. and C.M. Grisham. 1995. *Biochemistry*. Saunders College Publishers Lehninger, A.L. 2008. *Principles of Biochemistry*. (5<sup>th</sup> edn). CBS publishers & distributors, Delhi Hanes, B. D. and N.M. Hoopar. 1998. *Instant notes: Biochemistry*. University of Leeds, UK Horton, H.R., Morsan, L.A., Scrimgeour, K.G., Perry, M.D. and J.D.Rawn. 2006. *Principles of Biochemistry*. Pearson Educations, International, New Delhi

Jermy M. Berg, John L Tymoczko, Lubert Stryer, 2012, Biochemistry. W H Freeman Keith Wilson and John Walker. 2008. *Principles and Techniques of Biochemistry and Molecular biology* (6<sup>th</sup> edn). Cambridge University Press, UK

Murray, K., Granner, D.K., Maynes, P.A and V.W.Rodwell. 2006. *Harper's Biochemistry*. (25<sup>th</sup> edn). McGraw Hill, New York

Oser, B.L.1965. Hawk's Physiological Biochemistry. Mc Graw Hill Book Co.

Palmer Trevor.2001. Enzymes: Biochemistry, Biotechnology & Clinical chemistry.

Horwood Publ .com., England

Rama Rao, A.V.S.S. 1986. Text Book of Biochemistry. L.K. & S Publishers

Stayer, L. (latest) Biochemistry. II edition, W.H. Freeman & Co. NY

Vasudevan, D.M. and S.Sreekumar. 2000. Text of Biochemistry for Medical Students.

Jaypee Brothers, Medical Publishers (P) Ltd. New Delhi

Voet, D. and J.G. Voet. 2004. Biochemistry. John Wiley & Sons., NY.

Zubay, G.1989. Biochemistry. McMillan Publishing Co., New York.

#### **ZO 213**

## Biophysics, Instrumentation and Computer Science 100 hours Biophysics 25 hours

#### **Module 1 Thermodynamics**

5 Hours

- 1.1. Introduction- Concept of energy and laws of Thermodynamics.
- 1.2. Matter and energy-Life as an energy system-order, disorder, Entropy, Enthalpy.
- 1.3. Photo bioenergetics: Photosynthesis light and dark reactions, Redox couple and redox potential
- 1.4 Chemo-bioenergetics: electron transport and oxidative phosphorylation, Chemiosmotic theory and binding change mechanism of ATP synthesis.
- 1.5 Life as an autocatalytic system

#### Module 2 Electromagnetic spectrum

8 Hours

- 2.1. Cosmic radiation, Gamma radiation, X Rays, UV radiation, visible spectrum, Infrared rays, microwaves and radio waves.
- 2.2. Biological applications

#### **Module 3 Radiation Biophysics**

8 Hours

- 3.1. Radioactivity, Detection and measurement of radiation
- 3.2. Radio-labelling methods,- detection and measurement of different types of radioisotopes and their applications in biology, incorporation of radioisotopes in biological tissues and cells, molecular imaging of radioactive material and safety guide lines
- 3.3 Ionizing radiation and induced mutations
- 3.4. Fluorescence
- 3.5. Nuclear medicine-Internally administered radioisotopes. Radioiodine in thyroid function analysis. Renal, liver and lung function analysis.

#### Module 4 . Nanotechnology

4 Hours

- 4.1 Introduction to Nanobiology
- 4.2 Nanosensors and Nanomedicines.

#### **INSTRUMENTATION**

50 hours

#### Module 5. Methodology and working of microscopes

15 Hours

- 5.1 Phase contrast microscope
- 5.2 Fluorescent microscope
- 5.3. Electron microscope- SEM and TEM, different fixation techniques for EM, Freeze etch and freeze fracture methods for EM,
- 5.4 Laser scan confocal microscope

5.5 Environmental scanning electron microscope

#### **Module 6 Centrifugation**

8 Hours

- 6.1 Ordinary, high speed centrifuges
- 6.2 density gradient centrifugation
- 6.3, Ultracentrifugation

#### **Module 7 Electrophoresis**

7 Hours

- 7.1 Principles
- 7.2 Gel electrophoresis- SDS PAGE, Agarose Gel Electrophoresis
- 7.3 High voltage electrophoresis
- 7.4 Immuno electrophoresis- principle and application

#### **Module 8 Chromatography**

**5 Hours** 

- 8.1. Principles
- 8.2. Column chromotography, Ion exchange chromatography, HPLC, Gas chromatography

#### **Module 9 Biophysical methods**

15 Hours

- 9.1. Colorimeter, spectrophotometer, flame photometer
- 9.2 Atomic absorption spectrophotometer, fluorescent spectrometer
- 9.3. Infra red spectrophotometry, NMR and EMR spectroscopy, Different types of Mass spectrometry and surface plasma resonance methods
- 9.4. Molecular analysis using UV /visible light, fluorescence, circular dichroism,
- 9.5 Molecular structure determination using X ray diffraction
- 9.6. Electrophysiological methods- simple neuron recording, patch clamp recording, ECG, Brain activity recording, Lesions and stimulation of brain, pharmacological testing, PET (Positron emission tomography), MRI, FMRI, CAT scanning methods

#### **COMPUTER SCIENCE**

25 Hours

#### Module 10 Introduction to computers -(self study)

- 10.1. Basic organisation of a computer- hard ware and soft ware,
- 10.2. Hardware-input out put devises, processor Modules, storing, controlling
- 10.3. Characteristics of computers

#### **Module 11 Computer generations**

8 Hours

- 11.1 Classification -first to 5<sup>th</sup> generation
- 11.2 Notebook, laptops, PCs, workstations, mainframe system, supercomputers, client and server computers, hand held computers,- tablet pc, PDA, pocket PC, smart phone.
  - 11.2.1. Artificial intelligence
- 11.3 Number systems binary, octan, hexadecimal

#### Module 12. Soft ware

4 Hours

- 12.1. Relationship between hard ware & soft ware, system soft ware & application soft ware
- 12. 2. Acquiring soft ware buying, pre written soft ware, ordering customised soft ware, developing customized software, down loading public domain soft ware, soft ware development steps- firmware, and middle ware

#### **Module 13 Operating systems**

4 Hours

- 13. 1 Windows, DOS, Linux (self study)
- 13.2 Concept of free software

#### **Module 14. Computer Programming**

4 Hours

- 14.1. Low level languages
- 14.2. High level languages
- 14.2.1.Programming language C++

#### **Module 15 Computer and Communications**

5 Hours

- 15.1 LAN(local area net work)WAN(wide area network, MAN(Metropolitan area network)
- 15 .2 Internet, email, www, social network groups etc.

#### **REFERENCES**

Ackerman, E. 1962. Biophysical Science. Prentice hall Inc.

Alonso, A., and Arrondo, J.L.R.2006. *Advanced Techniques in Biophysics*. Springer Arora, M. P. 2007. *Biophysics*. Himalaya Publishing House

Baker, E.J. and Silverton R.E. 1978. *Introduction to Medical Laboratory Technology*. ELBS.

Das, D. 1991. Biophysics and Biophysical Chemistry. Academic Publishers, Calcutta

Edward, A.L. 1997. Radiation Biophysics. Academic Press, NY

Ernster, L. (Ed.). 1985. Bioenergetics. Elsivier, NewYork

Ghatak K.L. 2011. *Techniques and Methods in Biology*. PHI Learning Pvt. Ltd. New Delhi Gupta A. 2009. *Instrumentation and Bio-Analytical Techniques*. PragatiPrakashan, Meerut.

Hoope, W. et.al. 1983. Biophysics. Springer Verlag, Berlin.

Lehninger, A.L.1971. Bioenergetics. W.A. Benjamin, London

Narayanan, P. 2000. *Essentials of Biophysics*. New Age International (P) Ltd. Publishers, New Delhi.

Nicholls, D.G. And Ferguson S J (1992)Bioenergetics Academic press Newyork

Pradeep T.2007. NANO: The Essentials. Understanding Nanoscience and

Nanotechnology. Tata McGraw Hill Education Pvt. Ltd., New Delhi

Roy, R.N. 1996. *A Textbook of Biophysics*. New Central Book Agency(P) Ltd. Calcutta Sandhu, G.S. 1990. *Research Techniques in Biological Sciences*. Anmol Publications, New Delhi

Srivastava, P.K. 2006. *Elementary Biophysics. An Introduction*. Narosa Publishing Delhi Varghese, T. and Balakrishna, K.M. 2012. *Nanotechnology-An Introduction to Synthesis, Properties and Applications of Nanomaterials*. Atlantic Publishers and Distributors Weesner, F.M. 1960. *General Zoological Microtechniques*. The Williams & Wilkins Co., Baltimor

#### **ZO 221**

#### ADVANCED PHYSIOLOGY AND FUNCTIONAL ANATOMY

#### Total 100 Hours

- 1.1 Introduction to Physiology and Anatomy
- 1.2 A brief history of Physiology and Anatomy
- 1.3 Cell as a living Module of the body
- 1.4. Fluids in the cell environment
- 1.5 Resistance of the cell to acidity and alkalinity

#### Module 2 – Support and Movement

(10hrs)

- 2.1. Cellular movements, Cytoskeleton, Hydrostatic skeleton
- 2.2. Terrestrial, aquatic and aerial locomotion
- 2.3. Musculo skeletal system Bones and muscles- structure and its role in locomotion with reference to humans
- 2.4. Theories of molecular basis of muscle contraction
- 2.5. Catch muscle and Fibrillar muscle
- 2.6. Clinical implications

#### Module 3- Nutrition (10 hrs)

- 3.1. Feeding mechanism in animals (self study)
- 3.2. General principles of Gastro-intestinal function
- 3.3. Factors that regulate quantity of food
- 3.4. Secretory function of the alimentary canal-hormones and enzymes
- **3.5.** Absorption mechanism of digested nutrients
- 3.6. Obesity- causes and consequences
- 3.7. Gastro -intestinal disorders

| Module 4- Circulation                                                            | (12 hrs)              |
|----------------------------------------------------------------------------------|-----------------------|
| 4.1 Body fluids in invertebrates and vertebrates                                 |                       |
| 4.2. Types of heart, anatomy of heart (human) and Haemopoies                     | sis                   |
| 4.3. Coronary circulation, Heart valves and Heart sounds                         |                       |
| 4.4.Circulatory Shock, Cardiac failure                                           |                       |
| 4. 5. Control of blood pressure and blood flow                                   |                       |
| Module 5- Respiration                                                            | (10 hrs)              |
| 5.1.Respiratory organs of invertebrates and vertebrates and it                   | s functions           |
| 5.2.Mechanism of Pulmonary ventilation                                           |                       |
| 5.3.Respiration of unusual environment – Aviation, High altit Foetal respiration | ude, Deep sea diving, |
| 5.4Regulation of respiration                                                     |                       |
| 5.5Respiratory disturbance; Oxygen therapy, Artificial respir                    | ation                 |
| Module 6-Excretion and Osmoregulation                                            | (10 hrs)              |
| 6. 1.Types of Excretion, Structure of kidney, Basic renal proces                 | s (self study)        |
| 6.2. Osmo regulation in fresh water, marine and terrestrial ar                   | nimals                |
| 6.3.Regulation of sodium and water balance, Primary sodium Urine concentration   | n re absorption,      |
| 6.4. Diuretics and kidney diseases. Creatine clearance- Plasma                   | creatine              |
| 6.5. Haemodialysis, Peritonial dialysis and transplantation                      |                       |
| 6. 6. Regulation of acid-base balance, blood volume and extra c                  | ellular volume        |
| 6.7. Respiratory regulation of acid base balance                                 |                       |
| Module 7- Nervous Co ordination                                                  | (10 hrs)              |
| 7.1. Neurons, Types of Neurons, transmission of Nerve impulse                    | (self Study)          |
| 7.2. Giant nerve fibres in invertebrates                                         |                       |
|                                                                                  |                       |

- 7.4. Factors leading to neuronal death
- 7.5. Neuro transmitters, neuro modulators and mechanism of neuro transmitter release
- 7.6. Neuronal disorders-strokes, exicotoxicity and NMDA receptors

#### Module 8- Endocrinology

(10 hrs)

- 8.1. Invertebrate and Vertebrate endocrine system (self study)
- 8.2. Classification of Hormones and nature of hormonal action
- 8.3. Structure and function of different hormones
- 8.4. Neuro-endocrine feedback and response to various stimuli
- 8.5. Measurement of Hormone concentration in blood

#### Module 9 - Somatic and Special senses

(10 hrs)

- 9.1 Structure of Invertebrate and Vertebrate eye
- 9.2Tactile, Position, Pain, Thermal and taste Senses
- 9.3 Visual pathways organisation of visual cortex. Analysis of visual information, detection of colour
  - 9.4 Auditory pathways- Functions of cerebral cortex in hearing
  - 9.5 Neuronal mechanism of sound detection and direction

#### Module 10-Reproduction

(10 hrs)

- 10.1 Male reproductive system- Anatomy Spermatogenesis and transport of sperm (self study)
  - 10.2 Hormonal control of male reproductive function
  - 10.3 Female reproductive system- Anatomy, Ovarian function (self study)
    - 10.4 Control of ovarian function. Uterine changes in menstrual cycle, effects of estrogen and progesterone. Androgen in women
  - 10.5 Pregnancy ovum transport, sperm activation, implantation and placentation
  - 10.6 Hormonal and other changes during pregnancy- Parturition, Lactation
  - 10.7 Birth control measures. Pre-natal diagnostic tests.

10.8 Adjustments of the infants to extra uterine life

Module 11- Stress and adaptation

(6 hrs)

- 11.1 Eco physiology History and Concepts
- 11.2 Heat exchange, Thermal strategies and Thermogenesis
- 11.3 Life at high and low body temperature
- 11.4 Stress and brain

Module 12- Sports Physiology

(6 hrs)

- 12.1 Muscles in exercise
- 12.2 Dope test, drugs and athletes
- 12.3 Fitness test. Bio energetic fuel for muscle work

#### **REFERENCES**

Clarke, R.K. 2010. *Anatomy and Physiology*. Jones and Bactlett publishers, London. Franklyn, F. and Bolander. 2004. *Molecular Endocrinology*. Academic press.

Ganong, W.F.2003. Review of Medical Physiology. Mc Graw Hill Co.

Ghas, C.L. 2007. A Text Book of Practical Physiology. Medical Publishers Ltd., New Delhi.

Guyton, A.C. and Hall, J.E. 2007. Text Book of Medical Physiology. Elsevier.

Hadley, M.E. 2005. Endocrinology, Pearson Education.

Hill, W.R., Wyse, G.E. and Anderson, M. 2007, *Animal Physiology*, Sinauer Associates, Inc.U.S.A.

Hoar. W.R. 2004. General and Comparative Physiology, Pearson Education.

Nagabhushanam., Kudarkar and Sarojini, 2002. *Text Book of Animal Physiology*, Oxford IBH Publishing Co. Pvt. Ltd.

Prosser, C.L. Comparative Animal Physiology, Saunder College, Philadelphia.

Ranganathan.T.S. 2008. A Text Book of Human Anatomy, S. Chand and Co.

Singh, D.P. 2003. Stress Physiology, New Age International Publishers.

Tortora,G.J. and Derickson,B. 2007. *Principles of Anatomy and Physiology.* John Wiley & Sons inc.

Tortora, G.J and S.R. Grabowski. 1996. *Principles of Anatomy and Physiology*. Harper Collins College Publishers.

#### **Zo222 Genetics, Quantitative Analysis and Research Methodology**

| Module 1 Introduction (5 hrs)  1.1. Genetics and modern agriculture 1.2. Genetics and medicine 1.3. Legal and ethical issues in genetics  Module 2 Mendelian Genetics and its Application (15 hrs)  2.1. Gene mapping 2.2. Recombination frequency 2.3. Chromosome banding 2.4. Genetics in animal breeding 2.5. General effects of inbreeding and out breeding; hybrid vigour. 2.6. Expressivity, penetrance 2.7. Modern concept of Mendelism  Module 3 Population Genetics 3.1 Genetic variations 3.2 Polymorphism 3.3 Gene pool 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics (15 hrs)  Module 5 Modules and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics (12 hrs) 5.1 Retrovirus 5.2 (Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 5.6 Microbes in genetic engineering                                                                        | Geneti | ics                                                             | Total 100 Hrs<br>(70hrs) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------|--------------------------|
| 1.1. Genetics and modern agriculture 1.2. Genetics and medicine 1.3. Legal and ethical issues in genetics  Module 2 Mendelian Genetics and its Application (15 hrs) 2.1. Gene mapping 2.2. Recombination frequency 2.3. Chromosome banding 2.4. Genetics in animal breeding 2.5. General effects of inbreeding and out breeding; hybrid vigour. 2.6. Expressivity, penetrance 2.7. Modern concept of Mendelism  Module 3 Population Genetics (15 hrs) 3.1 Genetic variations 3.2 Polymorphism 3.3 Gene pool 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics (15 hrs) 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics (12 hrs) 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 6.6 Microbes in genetic engineering                            | Modul  | le 1 Introduction                                               | (5 hrs)                  |
| Legal and ethical issues in genetics   Module 2 Mendelian Genetics and its Application (15 hrs)   2.1. Gene mapping (2.2. Recombination frequency   2.3. Chromosome banding (2.4. Genetics in animal breeding   2.5. General effects of inbreeding and out breeding; hybrid vigour. (2.6. Expressivity, penetrance   2.7. Modern concept of Mendelism (15 hrs)   Module 3 Population Genetics (15 hrs)   3.1 Genetic variations (2.2 Polymorphism   3.2 Polymorphism (3.3 Gene frequency   3.5 Distribution patterns (3.6 Hardy Weinberg equilibrium   3.6 Hardy Weinberg equilibrium (3.7 Disequilibrium   3.7 Disequilibrium (4.1 Pedigree analysis – Karyotype analysis   4.2 X-Chrmosome dosage (4.3 Lyon hypothesis and mosaicism   4.4 Genetics of ABO system (4.5 Rh Gisease and its inheritance   4.5 Rh disease and its inheritance (4.6 Sickle haemoglobin and inheritance; thalassemias   4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.   Module 5 Microbial Genetics   5.1 Retrovirus (22 hrs)   5.2 Viral genome and multiplication – HIV genome and multiplication   5.1 Reproductive cycle of RNA viruses   5.2 Iambda Phages   6.3 Richer in genome in genetic engineering   Module 6 Genetics in Medicine and Forensics (8 hrs) | 1.1.   | Genetics and modern agriculture                                 | , ,                      |
| Module 2 Mendelian Genetics and its Application (15 hrs)  2.1. Gene mapping 2.2. Recombination frequency 2.3. Chromosome banding 2.4. Genetics in animal breeding 2.5. General effects of inbreeding and out breeding; hybrid vigour. 2.6. Expressivity, penetrance 2.7. Modern concept of Mendelism  Module 3 Population Genetics (15 hrs) 3.1 Genetic variations 3.2 Polymorphism 3.3 Gene pool 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics (15 hrs) 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics (12 hrs) 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 5.6 Microbes in genetic engineering                                                                                                                                      | 1.2.   | Genetics and medicine                                           |                          |
| 2.1. Gene mapping 2.2. Recombination frequency 2.3. Chromosome banding 2.4. Genetics in animal breeding 2.5. General effects of inbreeding and out breeding; hybrid vigour. 2.6. Expressivity, penetrance 2.7. Modern concept of Mendelism  Module 3 Population Genetics 3.1 Genetic variations 3.2 Polymorphism 3.3 Gene pool 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                 | 1.3.   | Legal and ethical issues in genetics                            |                          |
| 2.2. Recombination frequency 2.3. Chromosome banding 2.4. Genetics in animal breeding 2.5. General effects of inbreeding and out breeding; hybrid vigour. 2.6. Expressivity, penetrance 2.7. Modern concept of Mendelism  Module 3 Population Genetics (15 hrs) 3.1 Genetic variations 3.2 Polymorphism 3.3 Gene pool 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 6.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                        |        | • • • • • • • • • • • • • • • • • • • •                         | (15 hrs)                 |
| 2.3. Chromosome banding 2.4. Genetics in animal breeding 2.5. General effects of inbreeding and out breeding; hybrid vigour. 2.6. Expressivity, penetrance 2.7. Modern concept of Mendelism  Module 3 Population Genetics 3.1 Genetic variations 3.2 Polymorphism 3.3 Gene pool 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics  Module 6 Genetics in Medicine and Forensics  Module 6 Genetics in Medicine and Forensics  (15 hrs)  (15 hrs)                                                                                                                 |        | •                                                               |                          |
| 2.4. Genetics in animal breeding 2.5. General effects of inbreeding and out breeding; hybrid vigour. 2.6. Expressivity, penetrance 2.7. Modern concept of Mendelism  Module 3 Population Genetics (15 hrs) 3.1 Genetic variations 3.2 Polymorphism 3.3 Gene pool 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics (15 hrs) 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 6.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                                           |        | · · ·                                                           |                          |
| 2.5. General effects of inbreeding and out breeding; hybrid vigour.  2.6. Expressivity, penetrance 2.7. Modern concept of Mendelism  Module 3 Population Genetics 3.1 Genetic variations 3.2 Polymorphism 3.3 Gene pool 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics  (8 hrs)                                                                                                                                                                                                                                                                              |        | _                                                               |                          |
| 2.6. Expressivity, penetrance 2.7. Modern concept of Mendelism  Module 3 Population Genetics (15 hrs) 3.1 Genetic variations 3.2 Polymorphism 3.3 Gene pool 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics (15 hrs) 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics (12 hrs) 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 5.6 Microbes in genetic engineering                                                                                                                                                                                                                                                                                                                                                                            |        |                                                                 |                          |
| 2.7. Modern concept of Mendelism  Module 3 Population Genetics 3.1 Genetic variations 3.2 Polymorphism 3.3 Gene pool 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics (15 hrs)  4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 5.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                                                                                                                                                                                      |        |                                                                 |                          |
| Module 3 Population Genetics 3.1 Genetic variations 3.2 Polymorphism 3.3 Gene pool 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics (15 hrs) 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 5.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                                                                                                                                                                                                                         |        | • • • • • • • • • • • • • • • • • • • •                         |                          |
| 3.1 Genetic variations 3.2 Polymorphism 3.3 Gene pool 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics (15 hrs) 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 5.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.7.   | Modern concept of Mendelism                                     |                          |
| 3.2 Polymorphism 3.3 Gene pool 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics (15 hrs) 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 5.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | •                                                               | (15 hrs)                 |
| 3.3 Gene pool 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics (15 hrs) 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 5.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                 |                          |
| 3.4 Gene frequency 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics (15 hrs) 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 5.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | • •                                                             |                          |
| 3.5 Distribution patterns 3.6 Hardy Weinberg equilibrium 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics (15 hrs) 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 5.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | •                                                               |                          |
| <ul> <li>3.6 Hardy Weinberg equilibrium</li> <li>3.7 Disequilibrium</li> <li>3.8 Factors disrupting gene equilibrium</li> <li>Module 4 Human Genetics (15 hrs)</li> <li>4.1 Pedigree analysis – Karyotype analysis</li> <li>4.2 X-Chrmosome dosage</li> <li>4.3 Lyon hypothesis and mosaicism</li> <li>4.4 Genetics of ABO system</li> <li>4.5 Rh disease and its inheritance</li> <li>4.6 Sickle haemoglobin and inheritance; thalassemias</li> <li>4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.</li> <li>Module 5 Microbial Genetics (12 hrs)</li> <li>5.1 Retrovirus</li> <li>5.2 Viral genome and multiplication – HIV genome and multiplication</li> <li>5.3 Reproductive cycle of RNA viruses</li> <li>5.4 Plasmids – Vector DNA – Insert DNA</li> <li>5.5 Lambda Phages</li> <li>5.6 Microbes in genetic engineering</li> <li>Module 6 Genetics in Medicine and Forensics (8 hrs)</li> </ul>                                                                                                                                                                                                                                                                                                                                             | 3.4    | Gene frequency                                                  |                          |
| 3.7 Disequilibrium 3.8 Factors disrupting gene equilibrium  Module 4 Human Genetics (15 hrs) 4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics (12 hrs) 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 5.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | Distribution patterns                                           |                          |
| Module 4 Human Genetics (15 hrs)  4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 5.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.6    | Hardy Weinberg equilibrium                                      |                          |
| Module 4 Human Genetics (15 hrs)  4.1 Pedigree analysis – Karyotype analysis 4.2 X-Chrmosome dosage 4.3 Lyon hypothesis and mosaicism 4.4 Genetics of ABO system 4.5 Rh disease and its inheritance 4.6 Sickle haemoglobin and inheritance; thalassemias 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics 5.1 Retrovirus 5.2 Viral genome and multiplication – HIV genome and multiplication 5.3 Reproductive cycle of RNA viruses 5.4 Plasmids – Vector DNA – Insert DNA 5.5 Lambda Phages 5.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.7    | Disequilibrium                                                  |                          |
| <ul> <li>4.1 Pedigree analysis – Karyotype analysis</li> <li>4.2 X-Chrmosome dosage</li> <li>4.3 Lyon hypothesis and mosaicism</li> <li>4.4 Genetics of ABO system</li> <li>4.5 Rh disease and its inheritance</li> <li>4.6 Sickle haemoglobin and inheritance; thalassemias</li> <li>4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.</li> <li>Module 5 Microbial Genetics (12 hrs)</li> <li>5.1 Retrovirus</li> <li>5.2 Viral genome and multiplication – HIV genome and multiplication</li> <li>5.3 Reproductive cycle of RNA viruses</li> <li>5.4 Plasmids – Vector DNA – Insert DNA</li> <li>5.5 Lambda Phages</li> <li>5.6 Microbes in genetic engineering</li> <li>Module 6 Genetics in Medicine and Forensics (8 hrs)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.8    | Factors disrupting gene equilibrium                             |                          |
| <ul> <li>4.2 X-Chrmosome dosage</li> <li>4.3 Lyon hypothesis and mosaicism</li> <li>4.4 Genetics of ABO system</li> <li>4.5 Rh disease and its inheritance</li> <li>4.6 Sickle haemoglobin and inheritance; thalassemias</li> <li>4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.</li> <li>Module 5 Microbial Genetics (12 hrs)</li> <li>5.1 Retrovirus</li> <li>5.2 Viral genome and multiplication – HIV genome and multiplication</li> <li>5.3 Reproductive cycle of RNA viruses</li> <li>5.4 Plasmids – Vector DNA – Insert DNA</li> <li>5.5 Lambda Phages</li> <li>5.6 Microbes in genetic engineering</li> <li>Module 6 Genetics in Medicine and Forensics (8 hrs)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Modul  | le 4 Human Genetics                                             | (15 hrs)                 |
| <ul> <li>4.3 Lyon hypothesis and mosaicism</li> <li>4.4 Genetics of ABO system</li> <li>4.5 Rh disease and its inheritance</li> <li>4.6 Sickle haemoglobin and inheritance; thalassemias</li> <li>4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.</li> <li>Module 5 Microbial Genetics (12 hrs)</li> <li>5.1 Retrovirus</li> <li>5.2 Viral genome and multiplication – HIV genome and multiplication</li> <li>5.3 Reproductive cycle of RNA viruses</li> <li>5.4 Plasmids – Vector DNA – Insert DNA</li> <li>5.5 Lambda Phages</li> <li>5.6 Microbes in genetic engineering</li> <li>Module 6 Genetics in Medicine and Forensics (8 hrs)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1    | Pedigree analysis – Karyotype analysis                          |                          |
| <ul> <li>4.4 Genetics of ABO system</li> <li>4.5 Rh disease and its inheritance</li> <li>4.6 Sickle haemoglobin and inheritance; thalassemias</li> <li>4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.</li> <li>Module 5 Microbial Genetics (12 hrs)</li> <li>5.1 Retrovirus</li> <li>5.2 Viral genome and multiplication – HIV genome and multiplication</li> <li>5.3 Reproductive cycle of RNA viruses</li> <li>5.4 Plasmids – Vector DNA – Insert DNA</li> <li>5.5 Lambda Phages</li> <li>5.6 Microbes in genetic engineering</li> <li>Module 6 Genetics in Medicine and Forensics (8 hrs)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2    | X-Chrmosome dosage                                              |                          |
| <ul> <li>4.5 Rh disease and its inheritance</li> <li>4.6 Sickle haemoglobin and inheritance; thalassemias</li> <li>4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.</li> <li>Module 5 Microbial Genetics (12 hrs)</li> <li>5.1 Retrovirus</li> <li>5.2 Viral genome and multiplication – HIV genome and multiplication</li> <li>5.3 Reproductive cycle of RNA viruses</li> <li>5.4 Plasmids – Vector DNA – Insert DNA</li> <li>5.5 Lambda Phages</li> <li>5.6 Microbes in genetic engineering</li> <li>Module 6 Genetics in Medicine and Forensics (8 hrs)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.3    | Lyon hypothesis and mosaicism                                   |                          |
| <ul> <li>4.6 Sickle haemoglobin and inheritance; thalassemias</li> <li>4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.</li> <li>Module 5 Microbial Genetics (12 hrs)</li> <li>5.1 Retrovirus</li> <li>5.2 Viral genome and multiplication – HIV genome and multiplication</li> <li>5.3 Reproductive cycle of RNA viruses</li> <li>5.4 Plasmids – Vector DNA – Insert DNA</li> <li>5.5 Lambda Phages</li> <li>5.6 Microbes in genetic engineering</li> <li>Module 6 Genetics in Medicine and Forensics (8 hrs)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.4    | Genetics of ABO system                                          |                          |
| 4.7 Genetic disorders – Patau, Edwards, Cri-du-chat syndromes, Philadelphia chromosome.  Module 5 Microbial Genetics (12 hrs)  5.1 Retrovirus  5.2 Viral genome and multiplication – HIV genome and multiplication  5.3 Reproductive cycle of RNA viruses  5.4 Plasmids – Vector DNA – Insert DNA  5.5 Lambda Phages  5.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5    | Rh disease and its inheritance                                  |                          |
| chromosome.  Module 5 Microbial Genetics (12 hrs)  5.1 Retrovirus  5.2 Viral genome and multiplication – HIV genome and multiplication  5.3 Reproductive cycle of RNA viruses  5.4 Plasmids – Vector DNA – Insert DNA  5.5 Lambda Phages  5.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.6    | Sickle haemoglobin and inheritance; thalassemias                |                          |
| <ul> <li>5.1 Retrovirus</li> <li>5.2 Viral genome and multiplication – HIV genome and multiplication</li> <li>5.3 Reproductive cycle of RNA viruses</li> <li>5.4 Plasmids – Vector DNA – Insert DNA</li> <li>5.5 Lambda Phages</li> <li>5.6 Microbes in genetic engineering</li> <li>Module 6 Genetics in Medicine and Forensics (8 hrs)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.7    | •                                                               | Philadelphia             |
| <ul> <li>5.1 Retrovirus</li> <li>5.2 Viral genome and multiplication – HIV genome and multiplication</li> <li>5.3 Reproductive cycle of RNA viruses</li> <li>5.4 Plasmids – Vector DNA – Insert DNA</li> <li>5.5 Lambda Phages</li> <li>5.6 Microbes in genetic engineering</li> <li>Module 6 Genetics in Medicine and Forensics (8 hrs)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Modul  | le 5 Microbial Genetics                                         | (12 hrs)                 |
| <ul> <li>5.3 Reproductive cycle of RNA viruses</li> <li>5.4 Plasmids – Vector DNA – Insert DNA</li> <li>5.5 Lambda Phages</li> <li>5.6 Microbes in genetic engineering</li> <li>Module 6 Genetics in Medicine and Forensics (8 hrs)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.1    | Retrovirus                                                      | ,                        |
| <ul> <li>5.3 Reproductive cycle of RNA viruses</li> <li>5.4 Plasmids – Vector DNA – Insert DNA</li> <li>5.5 Lambda Phages</li> <li>5.6 Microbes in genetic engineering</li> <li>Module 6 Genetics in Medicine and Forensics (8 hrs)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.2    | Viral genome and multiplication – HIV genome and multiplication |                          |
| <ul> <li>5.4 Plasmids – Vector DNA – Insert DNA</li> <li>5.5 Lambda Phages</li> <li>5.6 Microbes in genetic engineering</li> <li>Module 6 Genetics in Medicine and Forensics (8 hrs)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | ·                                                               |                          |
| <ul> <li>5.5 Lambda Phages</li> <li>5.6 Microbes in genetic engineering</li> <li>Module 6 Genetics in Medicine and Forensics (8 hrs)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | ·                                                               |                          |
| 5.6 Microbes in genetic engineering  Module 6 Genetics in Medicine and Forensics (8 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                 |                          |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | _                                                               |                          |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Modul  | le 6 Genetics in Medicine and Forensics (2 h                    | rs)                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | •                                                               | ,                        |

Human gene therapy

6.2

6.3 DNA fingerprinting: 6.3.1 Applications in forensic science 6.3.2 Applications in paternity testing

#### **QUANTITATIVE ANALYSIS & RESEARCH METHODOLOGY**

30 hrs

#### **QUANTITATIVE ANALYSIS 15 hrs**

#### **Module I. Introduction**

2 hrs

- Definition, history, scope of biostatistics and applications of statistics in biology (self study)
- 1.2. Descriptive and inferential statistics
- 1.3. Preliminary concepts population and sample, statistic and parameter, variables, sampling (self study)
- 1.4. Collection of data- primary and secondary data, methods. Use of software in statistics.

#### **Module II. Descriptive Statistics**

2 hrs

- 2.1 Processing and classification of data, presentation of data-tabulation and graphical and diagrammatic representation (self study)
- 2.2. Measures of Central Tendency, problems (self study).
- 2.3. Measures of Dispersion-problems, Skewness and Kurtosis
- 2.4. Correlation and Regression, problems (self study),

#### Module III. Probability distribution

3 hrs

- 3.1. Definition, important terms and concepts
- 3.2. Theorems in probability
- 3.3. Important theoretical distributions- Binomial, Poisson, and Normal probability distributions.

#### Module IV. Parametric test

4 hrs

- 4.1. Basic idea hypothesis testing, types of errors
- 4.2. Tests of significance for large and small samples- Z-test,

Chi- Square Test, Student's 't' test, F-test - problems -and ANOVA

#### Module V. Non-parametric tests

2 hrs

| 5.1. Characteristics, advantages and disadvantages                                                                                                                                                                                                                                                                  |                    |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|
| 5.2. Types (Brief account only)                                                                                                                                                                                                                                                                                     |                    |  |  |  |
| Module VI. Vital statistics                                                                                                                                                                                                                                                                                         | 2 hrs              |  |  |  |
| 6.1. Introduction, uses, methods of collection                                                                                                                                                                                                                                                                      |                    |  |  |  |
| 6.2. Measures of Vital Statistics, life tables                                                                                                                                                                                                                                                                      |                    |  |  |  |
| RESEARCH METHODOLOGY                                                                                                                                                                                                                                                                                                | 15 hrs             |  |  |  |
| Module I. Introduction                                                                                                                                                                                                                                                                                              | 2 hrs              |  |  |  |
| 1.1.Definition, meaning, objectives, and significance of research,                                                                                                                                                                                                                                                  |                    |  |  |  |
| Research methods vs Methodology.                                                                                                                                                                                                                                                                                    |                    |  |  |  |
| 1.2. Types of research – Descriptive vs. Analytical, Applied vs.                                                                                                                                                                                                                                                    |                    |  |  |  |
| Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical.                                                                                                                                                                                                                                                |                    |  |  |  |
| 1.3. Characteristics of good research, steps of research                                                                                                                                                                                                                                                            |                    |  |  |  |
| Module II. Research Formulation                                                                                                                                                                                                                                                                                     | 2 hrs              |  |  |  |
| 2.1. Formulation and defining a research problem, techniques involved                                                                                                                                                                                                                                               |                    |  |  |  |
| 2.2. Literature survey-Journals, conference proceedings, books, government reports, etc,                                                                                                                                                                                                                            |                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                     | ient reports, etc, |  |  |  |
| 2.3. Problem selection, formulation of working hypothesis                                                                                                                                                                                                                                                           | ent reports, etc,  |  |  |  |
|                                                                                                                                                                                                                                                                                                                     | 2 hrs              |  |  |  |
| 2.3. Problem selection, formulation of working hypothesis                                                                                                                                                                                                                                                           |                    |  |  |  |
| 2.3. Problem selection, formulation of working hypothesis  Module III. Research design                                                                                                                                                                                                                              |                    |  |  |  |
| <ul><li>2.3. Problem selection, formulation of working hypothesis</li><li>Module III. Research design</li><li>3.1. Meaning, need and features a good research design</li></ul>                                                                                                                                      |                    |  |  |  |
| <ul> <li>2.3. Problem selection, formulation of working hypothesis</li> <li>Module III. Research design</li> <li>3.1. Meaning, need and features a good research design</li> <li>3, 2, Different types of research design (exploratory, descriptive,</li> </ul>                                                     |                    |  |  |  |
| <ul> <li>2.3. Problem selection, formulation of working hypothesis</li> <li>Module III. Research design</li> <li>3.1. Meaning, need and features a good research design</li> <li>3, 2, Different types of research design (exploratory, descriptive, diagnostic and hypothesis-testing research studies)</li> </ul> |                    |  |  |  |

- 4.1. Data collection methods-primary and secondary, sampling design (self study), measurements etc. LC 50 & Dose Response.
- 4.2. Analysis of data (self study)
- 4.3. Interpretations –advantages and techniques-and generalizations of the findings

#### Module V. Scientific documentation

3 hrs

- 5.1. Significance of report writing, types of reports
- 5.2. Research report writing (thesis, dissertations, research articles, etc) characteristics and format
- 5.3. Writing and preparation of articles for publication and for oral and poster presentation
- 5.4. Project proposal and report writing.

#### Module VI. Research, extension and ethics

4 hrs

- 6.1. Publications-abstracting and indexing journals, books, conference / seminar proceedings, periodicals, reference sources, reviews, monographs. Extension tools, impact factor, citation.
- 6.2. Online libraries, e-journals, e-books, e-encyclopedia, institutional websites, TED Talk.
- 6.3. Intellectual property Rights-copy right, patents, trademarks, geographical indications, industrial design.
- 6.4. Research misconduct: fabrication, falsification and plagiarism
- 6.5. Precaution ISO standards for safety, lab protocols, lab animal uses, IACUC, control of hazards
- 6.6. Ethical norms, codes and policies for research ethic, laws in India

#### **REFERENCES**

#### Genetics

- 1. Daniel Fairbanks and W.R Anderson (2000) Genetics The Continuity of Life. Brooks/Cole Publishing Co., N.Y.
- 2. J. Herbert Tayleor, Molecular Genetics Part I & II:
- 3. Eldon. J., Gardner Principles of Genetics.
- 4. Sinnot, Dunn, Dobzhansky, Principles of Genetics: TMH Edn.
- 5. John D Hawkins, Gene Structure and Expression. Cambridge University Press Edinberg Buildings Cambridge CBZ/ZRU UK

- 6. PKU Nair and K. Prabhakar Achar, A Text Book of Genetics and Evolution: Konark Pubs.
- 7. Robert M Horton and Robert C. Tait, Genetics Engineering with PCR: Horizon Scientific Press, Wymondham Norfolk NR 19 OEH UK
- 8. R. World and S.B. Primrose, Principles of Gene Manipulation: Black Well Scientific Publishers, Melbourne, Paris.
- 9. Samuel Karlin Eviatar Nevo, Population Genetics and Ecology, Academic Press NY.
- 10. A Franklin Shull, Heredity. Mc.Graw Hill Book Co, London.
- 11. George W Burns, the Science of Genetics, Mae Millan CO New York.
- 12. A Gib De Busk, Molecular Genetics, Mae Millan CO New York.
- 13. Edgar Altenberg, Genetics, Oxford and IBH Publisher, New Delhi.
- 14. Janeway, Travens, (1996) Immunobiology Current Biology Ltd., Middle Sex House- 34-42 Cleveland Street, London.
- 15. Gunther S. Stent & Richard Calender Molecular Genetics, CMS Publishers, 485 Jain Bhawan, Bholanath Nagar, Shahdra, Newdeli
- 16. Benjamin Lewin, Genes V Oxford University Press, New York.
- 17. James D. Watson, Tania.A.Baker, Stephen.P.Bell, Alexander Gann, Michael Levine,
- 18. Richard Losick, (2004) Molecular Biology& Genes, Pearson Education.
- 19. Strickberger, M.W. Genetics, Macmillan Publishing Co., Inc., New York.
- 20. J.M. Walker and R. Rapley, (2002), Molecular Biology and Biotechnology, Purnima Publishing Corporation, New Delhi.

#### **Quantitative Analysis**

- 1. Fisher.R.A., Statistical Methods for Research
- 2. Biometrical Genetics Dover Publication, New York
- 3. Ostle B, Statistics in Research.
- 4. Agarwal, B.L. (1996) Basis Statistics. New Age International (P) Ltd. Publishers, New Delhi.
- 5. Bailey, N.T.J (1981). Statistical Methods in Biology. Hodder and Stongtton, London.
- 6. Finney, D.J. (1980). Statistics for Biologists. Chapman and Hall, London.
- 7. Caswell, F. (1982). Success in Statistics. John Murray Publishers Ltd., London.
- 8. Gupta, S.P. (1996). Statistical Methods. Sultan Chand & Sons Publishers, New Delhi.
- 9. Arora, P.N. and P K Malhan. 1996. Biostatistics Himalaya Pub. House
- 10. Bailey, N.T.J. 1994. *Statistical Methods in Biology* (3 <sup>rd</sup> edn). Cambridge University Press. London
- 11. Danial, W. 2006. Biostatistics: *A foundation for Analysis in Health Sciences*, John Wiley and Sons Inc., New York.
- 12. Dharmapalan, B. 2012. *Scientific Research Methodology*. Narosa Publishing House, New Delhi.
- 13. Finney, D.J. 1980. Statistics for Biologists. Chapman and Hall, London
- 14. Kothari C.R., 2009. *Research Methodology: Methods and Techniques.* New Age International Publishers, New Delhi.
- 15. Oliver, P.2005. Writing Your Thesis. Vistaar Publications. New Delhi.

#### **Zo223 Cell Biology, Molecular Biology and Bioinformatics** 100 hours

# Module 1 Membrane structure, models and membrane transport 1.1 Diffusion of small molecules across phospholipids bilayer 1.2 Uniport – catalysed transport 1.3 Membrane potential (10 hrs)

#### Module 2 Cell-cell signalling

(8 hrs)

- 2.1 Cell surface receptors
- 2.2 Signal transduction pathways (cyclic AMP, cyclic GMP, Ras, Raf and MAP kinase pathways)
- 2.3 Second messenger system

#### Module 3 Cell cycle

1.4

1.5

(6 hrs)

3.1 Cyclin and cyclin – dependent kinases

Active transport by ATP powered pumps

Co-transport by symporters and antiporters

- 3.2 Regulation of CDK cyclin activity
- 3.3 Check points in the cell cycle
- 3.4 Regulation of cell cycle in malignant cells

#### **Module 4 Chromatin structure**

(6 hrs)

- 4.1 Types of Chromatin
- 4.2 Detailed structure of nucleosome; higher order structure of chromatin and the role of histones HI, scaffold proteins, and radial loop model

#### **Module 5 Topology of Nucleic Acids**

(5 hrs)

- 5.1 Liking number and writhing number
- 5.2 DNA Super coiling
  - 5.2.1 Super coiling in prokaryotes
  - 5.2.2 Super coiling in eukaryotes
  - 5.2.3 Role of topoisomerases

#### Module 6 Organization of the eukaryotic genome

(12 hrs)

- 6.1 Genomic size and genetic content
- 6.2 Complexity of eukaryotic genome:
  - 6.2.1 Intragenic sequences -exons, introns; split gene organization; regulatory sequences
  - 6.2.2 Intergenic sequences
    - 6.2.2.1 Unique sequences
    - 6.2.2.2 Repetitive sequences: Highly repeated sequences satellite, minisatellite and microsatellite DNAs

      Moderately repeated sequences (e.g. SINEs and LINEs)
- 6.3 DNA denaturation-renaturation kinetics and genome complexity; in situ hybridization.
- 6.4 Organelle genomes-mitochondrial and plastid DNAs

#### Module 7 DNA Replication, repair and recombination

(14 hrs)

7.1 Prokaryotic and Eukaryotic DNA replication

- 7.2 DNA replication machinery.
- 7.3 Enzymes and accessory proteins involved in replication
- 7.4 DNA damage and repair

Direct reversal: photo reactivation, adaptive response

Excision repair

Mismatch repair

SOS repair and mutagenesis

ERecombination repair; Rec A and other recombinases

- 7.5 Damage signaling and checkpoints
- 7.6 DNA repair-associated disorders

#### **Module 8 Transcription and RNA processing**

(8 hrs)

- 8.1 Prokaryotic and eukaryotic transcription
- 8.2 Binding the transcription complex-promoters, factors and RNA polymerases.
- 8.3 Regulation of transcription
- 8.4 Sigma factor and its role in prokaryotic transcription.
- 8.5 Post-transcriptional processing of RNA precursors, spliceosomes.

#### Module 9 Translation-gene expression

(12 hrs)

- 9.1 Prokaryotic and Eukaryotic translation
- 9.2 The translation machinery
- 9.3 Mechanism of initiation, elongation and termination
- 9.4 Co-and post translational modifications of proteins.
- 9.5 Hormonal regulation of protein synthesis.

#### **Module 10 Gene Regulation Mechanisms**

(7 hrs)

- 10.1 Gene regulation in eukaryotes at various levels.
- 10.2 Transcription factors and DNA-binding domains (Zinc-finger motif and Helix-loophelix motif)
- 10.3 Transcription signals TATA Box, CAAT BOX., Enhancers.

#### **Module 11 Bioinformatics**

(12 hrs)

- 11.1 Introduction to bioinformatics, brief history and its role and importance in modern biology, internet, internet, portals, servers and search engines.
- 11.2 Biological databases, their purpose, primary, secondary, curated and uncurated databases types of databases (DNA, protein, RNA, functional and structural databases),
- 11.3 Uploading and downloading of data, FASTA format, data retrieval from databases, analyses tools and soft-wares and their applications, pair wise and multiple sequence analyses.
- 11.4 Construction of rooted and un-rooted phylogenetic trees, their interpretation and use in analyzing evolutionary trends, steps in phylogenetic analyses
- 11.5 Brief overview of computational biology, computation, prediction and modulation of biological pathways, (ex. Kegg pathways) e-cell, computational analyses of genomes and proteomes

#### References

- 1. Harvey Lodish, Arnold Berk, Sipursky, Matsudaria, David Baltomore and Darnell, (2002) Molecular Cell Biology, W.W. Freman and Company.
- 2. Gerald Karp (2005) Cell and Molecular Biology, John Wiley and Sons, Inc. USA
- 3. Richard Lodivk, (2004) Molecular Biology & Genes, Pearson Education.
- 4. B.Albert's, D. Bray, J. Lewis, M. Raff, K, Roberts and J.D. Waston, (2004) Molecular Biology of the Cell- Garland Publishing in New York.
- 5. Devlin, T.M. (2002) Text book if Biochemistry, John-Wiley and Sons, Inc., Publication.
- 6. Becker W.M, Kleinsmith L.J and Hardin J (2003) The World of the Cell. Pearson Education, Singapore.
- 7. John Ringo (2004) Fundamental Genetics. Cambridge University Press, UK.
- 8. Herbert Taylor, Molecular Genetics, Part 1 & II.
- 9. Daniel Fairbanks and W R Anderson (2000) Genetics The Continuity of Life. Brooks/Cole Publishing Co., N.Y.
- 10. Snustad, D.P. and Simmons, M.J. (2002) Principles of T Genetics John Wiley and Sons, Inc. New York.
- 11. Elliot, H.E. and Elliott, D.C. (2001). Biochemistry and Molecular Biology, OUP.
- 12. John D Hawkins, Gene Structure and Expression. Cambridge University Press Edinberg Building Cambridge CBZ/ZRU UK.
- 13. PKU Nair and K. Prabhakar Achar, A Text Book of Genetics and Evolution, Konark Pub.
- 14. A Franklin Shull (2000) Heredity. Mc. Graw Hill Book Co, London.
- 15. George W Burns (1999) The Science of Genetics, Mac Millian Co, New York.
- 16. A Gib De Busk (2000) Molecular Genetics, Mac Millan Co. New York.
- 17. Gunther S. Stnet and Richard Calender (2000) Molecular Genetics, CMS Publishers, 485 Jain Bhawan, Bholanath Nagar, Shahdara, Newdeli.
- 18. Benjamin Lewin, (2006) Genes IX Oxford University Press
- 19. James D Watson, Tania A Baker, Stephen P Bell, Alexander Gann, Michael Levine, Richard Losick, (2004) Molecular Biology of Genes, Pearson Education.
- 20. Strickberger, M.W (2000) Genetics, Macmillan Publishing Co., Inc., New York.
- 21. J.M. Walker and R. Rapley, (2002), Molecular Biology and Biotechnology, Purnima Publishing Corporation, New Delhi.
- 22. David E Sadava (2004) Cell Biology. Panima Publishing Corporation, New Delhi.
- 23. Pollard T D and Earnshaw W.C (2002) Cell biology. Elsevier Science, USA.
- 24. Wilson K and Walker J (2006) Principles and Techniques of Biochemistry and Molecular Biology, Cambridge University Press, N.Y
- 25. Andrew Read and Dian Donnai. (2007) New Clinical Genetics. Scion Publishing Ltd.,

#### A. Systematics and Evolutionary Biology

- 1. Collection and identification of the following using standard keys:
  - A. Insects (5 nos)
  - B. Prawn (2 nos)
  - C. Crab (2 nos)
  - D. Fishes (5 nos)
- 2. Study of preservation media and tools and materials for taxidermy
- 3. Comparative study of prokaryotic and eukaryotic cells by staining and mounting (evolutionary significance).

#### B. Biochemistry

- 1. Titration curve of acetic acid. Titration of a measured volume of acetic acid with sodium hydroxide (NaOH) to determine the amount of acid in the given solution and pKa of acetic acid.
- 2. Determination of the isoelectric pH of the given amino acid by titration method.
- 3. Estimation of DNA/RNA
- 4. Quantitative estimation of glycogen of a tissue.
- 5. Quantitative estimation of blood glucose.
- 6. Quantitative estimation of serum protein.
- 7. Determination of acid value of the given fat.
- 8. Determination of saponification value of the given fat.
- 9. Estimation of serum cholesterol using a standard protocol
- 10. Determination of the Michaelis constant (Km value) for the digestion of case in by trypsin.
- 11. Estimation of serum cholesterol using a standard protocol.

#### C. Biophysics, Instrumentation and Computer Application

- 1. Micrometry: Measurement of microscopic objects using micrometer.
- 2. Separation of haemolymph of serum protein by gel electrophoresis.
- 3. Sketching of biological specimens using a camera Lucia.
- 4. Quantification estimation of Na, K, Ca of the given sample with the help of flame photometer/ spectrophotometer preparing standard curve.
- 5. Preparation of tables and bar diagrams using suitable softwares, from the data provided.
- 6. Statistical Analysis (Chi-square, t-test, correlation, regression, standard deviation and standard error) of the given data using suitable softwares. E.g. PH Stat

#### References

- 1. Hardd Varley Practical clinical Biochemistry
- 2. Ranjana Chawla, Practical Clinical Biochemistry Methods and interpretations.
- 3. Hawk's Practical Physiological Chemistry
- 4. Jayaraman, Practical Biochemistry.

#### Practical II

#### **Zo224** Advanced Physiology and Functional Anatomy

Please use software such as **PhysioEx. 9.0** where ever applicable

- 1. Effect of salivary amylase on starch (colorimetric)
  - a) Influence of temperature and calculation Of Q10
  - b) Influence of pH
- 2. Transport of glucose through intestinal wall (everted gut sac) of a suitable animal
- 3. Kymograph recording of simple twitch and summation.
- 4. Effect of temperature on muscle contraction.
- 5. Kymograph recording of heart beat and the effect of drugs (accetylcholine and adrenaline).
- 6. Effect pf different concentrations of NaCl (0.1% to 2%) on the diameter of RBCs using micrometry.
- 7. Estimation of RBCs and WBCs in vertebrate blood
- 8. Blood histology of earthworm/cockroach fish and chick.
- 9. Studies on feeding-Mounting of mouth parts of housefly, honey bee and mosquito in relation to food and feeding.

Semester III

#### Paper I - ZO 231 MICROBIOLOGY & BIOTECHNOLOGY

[100 Hours]

#### Part A. MICROBIOLOGY

[50 Hours]

#### **Module I. Introduction to Microbiology**

(7 Hours)

- 1.1. Scope and history of Microbiology mention the contributions of important Scientists who developed Microbiology as a major discipline (e.g. Pasteur, Koch etc).
- 1.2. Microbial Diversity including Extremophiles brief account.
- 1.3. Characteristic features of microorganisms Bacteria, Virus, Fungi & Protozoa. Mention Microalgae. Classification of Bacteria, Virus, Fungi & Protozoa.
- 1.4. Classification of Bacteria, Bergy's manual (self study)

#### Module 2. Bacterial Cell Structure & Function

(8 Hours)

- 2.1. Ultra-structure of bacteria cell membrane, cytoplasmic inclusions, nucleiod etc
- 2.2. Bacterial Cell Wall structure, differences between gram positive and negative cell wall, gram staining.
- 2.3. External components & their functions pili, flagella, fimbriae, capsules, slime layers etc.

#### Module III. Microbial Nutrition & Growth

(10 Hours)

- 3.1. Common nutritional requirements of microorganisms autotrophy and heterotrophy.
- 3.2. Types of culture media.
- 3.3. Microbial growth overview of cell growth, generation time, measurement of growth.
- 3.4. Typical growth curve, continuous culture, effect of environmental factors on growth. Stress response

#### Module IV. Industrial & Environmental Microbiology

(10 Hours)

#### **Industrial Microbiology**

Concept of fermentation. Types of fermentation – submerged, solid state – mention briefly.

Basic design and types of fermenters.

Products of Industrial Microbiology such as Alcohol, Antibiotics (e.g. Penicillin), Organic acids (e.g. Acetic acid, Lactic acid).

Microbiology of milk & foods. Preservation of milk - Pasteurization techniques. Probiotics.

Microbial spoilage of different types of foods & Food borne diseases (self study)

Beneficial activities of microbes in food (self study)

Microbial quality control and safety of food (self study)

#### **Environmental Microbiology**

Introduction to terrestrial and aquatic microbiology. Principles of Microbial Ecology.

Biogeochemical cycles – nitrogen cycle, sulphur cycle & carbon cycle. Role of microorganisms in the biogeochemical cycles.

Microbiology of waste treatment. Brief account of microbial treatment of waste water and solid wastes.

Bioremediation – microbial treatment of radioactive wastes and xenobiotics.

Microbes in decomposition and recycling process (self study)

Symbiotic and asymbiotic N2- fixation (self study)

#### Module V. Medical Microbiology

(15 Hours)

- 5.1 Host-microbe interaction process of infection, pathogenecity, virulence & infection, microbial adherence, penetration of epithelial cell layers and events in infection following penetration, Infection of blood, lymphatic system.
- 5.2. Exotoxins classification, mechanism of action of exotoxins e.g. Diphtheria, Botulinum, Tetanus, and Cholera toxins.
- 5.3. Control of Microorganisms various physical & chemical methods.
- 5.4. Use of antibiotics and other antimicrobial drugs.
- 5.5. Drug resistance and emergence of multiple drug resistance recent cases of TB (XDR, TDR); NDM etc.
- 5.6. A survey of harmful and beneficial microbes (self study)

#### Part B. BIOTECHNOLOGY

[50 Hours]

#### Module VI. Introduction to Biotechnology

(10 Hours)

- 6.1. History of Biotechnology (self study). Broad areas of BT traditional and modern; types plant biotechnology, animal biotechnology and microbial biotechnology.
- 6.2. Techniques in biotechnology brief description of common techniques such as tissue culture, genetic engineering, cloning etc.

#### **Module VII. Molecular Cloning**

(15 Hours)

7.1. Gene cloning – basic steps in gene cloning. Isolation of donor DNA.

- 7.2. Vectors types and characteristics e.g. plasmids, phages, hybrid vectors, artificial chromosomes.
- 7.3. Enzymes used in gene cloning exonuclease, endonuclease, ligase, reverse transcriptase, polymerase, terminal transferase etc.
- 7.4. Techniques of gene transfer calcium chloride transformation, microinjection, electroporation, shotgun cloning, *Agrobacterium* mediated transfer etc
- 7.5. Practical application of genetic engineering useful products. Application in Medicine, Agriculture, Aquaculture and Animal Husbandry, Environment etc. Biotechnology Industry.

#### Module VIII. Recent Trends in Biotechnology

(15 Hours)

- 8.1. Synthetic Biology description and developments in the area.
- 8.2. Artificial life concept and achievements
- 8.3. DNA Barcoding concept and experimental details with examples.
- 8.4. GMOs and GM Foods pros and cons.
- 8.5. Microbial warfare bio-weapons and bioterrorism

#### **Module XI. Bioethics**

(5 Hours)

8.5. Ethical, legal and social issues of biotechnology.

#### Module XII. Biotechnology in India

(5 Hours)

- 9.1. History of biotechnology research in India.
- 9.2. India's Biotechnology Policy
- 9.3. Biotechnology Regulatory Agencies in India.
- 9.4. Comparison with developed countries

#### **REFERENCES**

- 1. Microbiology Prescot, Harley and Klein, 6<sup>th</sup> Edition.
- 2. Microbiology: An Introduction. Tortora, Funke & Chase. 10<sup>th</sup> edition (2009). Benjamin Cummings. ISBN: 0321550072.
- 3. Bacteria: The Benign, the Bad, and the Beautiful. Trudy M. Wassenaar. ISBN: 978-1-1181-0766-9. 2011, Wiley-Blackwell
- 4. Microbiology. Pelczar, Reid and Chan. Tata-McGrawHill. Reprint 2008. ISBN 0074623206, 9780074623206.
- 5. Introductory Food Microbiology. H. A. Modi 2007. ISBN 8179102213.
- 6. Food Microbiology An Introduction by Thomas J Montville, Karl R. Mathews
- 7. Microbiology by Edward Alcamo Wiley publishing inc ISBN 0-8220-5333-0

- 8. Alamo, E.I. (2001). *Fundamentals of Microbiology* (6<sup>th</sup> Ed.). Jones & Bartlett Publishers, Inc., Massachusetts, USA. ISBN: 0 7637 1067 9
- Madigan, M.T., Martinko, J.M., Dunlap, P.V. & Clark, D.P. (2009). Biology of Microorganisms (12<sup>th</sup> Ed.). Pearson Benjamin & Cummings, New York, USA. ISBN: 0 321 53615 0, 978 0321 53615 0

#### **BIOTECHNOLOGY**

- 1. Bejamin Lewin Genes X (2011).
- 2. James D Watson Molecular Biology of the Gene (6th Edition)
- 3. George W Burns, the Science of Genetics, Mae Millan CO New York.
- 4. A Gib De Busk, Molecular Genetics, Mae Millan CO New York.
- 5. Edgar Altenberg, Genetics, Oxford and IBH Publisher, New Delhi.
- 6. Janeway, Travens, (1996) Immunobiology Current Biology Ltd., Middle Sex House- 34-42 Cleveland Street, London.
- 7. Gunther S. Stent & Richard Calender Molecular Genetics, CMS Publishers, 485 Jain Bhawan, Bholanath Nagar, Shahdra, Newdeli
- 8. Richard Losick, (2004) Molecular Biology& Genes, Pearson Education.
- 9. Strickberger, M.W. Genetics, Macmillan Publishing Co., Inc., New York.
- 10. J.M. Walker and R. Rapley, (2002), Molecular Biology and Biotechnology, Purnima Publishing Corporation, New Delhi.

#### **Useful websites**

- 1. http://www.microbeworld.org
- 2. <a href="http://www.ncbi.nlm.nih.gov">http://www.ncbi.nlm.nih.gov</a>
- 3. <a href="http://www.accessexcellence.org/RC/AB/BA/">http://www.accessexcellence.org/RC/AB/BA/</a>
- 4. http://www.accessexcellence.org/RC/AB/IE/
- 5. <a href="http://bacteriamuseum.org">http://bacteriamuseum.org</a>

Zo232: Ecology, Ethology and Biodiversity Conservation

Part 1: Ecology [30 Hours]

#### **Topics for self study**

Biotic and abiotic factors and their interactions.

Structure, basic components, their interactions and inter-relations. Fundamental concepts relating to energy - first and second laws of thermodynamics, entropy. Gaseous and sedimentary cycles

Characteristics of population: density, natality, mortality, biotic potential, environmental resistance, growth forms, immigration, emigration and migration. Characteristics: Species diversity, stratification, dominance, boundaries, ecotone and edge effect, ecological indicators.

#### Module 1: Ecological Energetics (8 Hrs)

- 1.1 Solar energy and photosynthetic production, efficiency of energy capturing, chemosynthesis.
- 1.2 Energy flow features of energy flow (unidirectional flow and loss of energy as heat) and pathways of energy flow.
- 1.3 Productivity primary production and production efficiency, secondary production, standing crop.
- 1.4 Food chain (grazing, detritus and auxiliary food chains), food webs, trophic levels and ecological pyramids (pyramid of numbers, pyramid of biomass and pyramid of energy (self study).
- 1.5 Classification of ecosystems based on energy input (natural unsubsidised and subsidised solar powered ecosystems, human subsidised solar powered ecosystem and fuel powered urban and industrial systems).

#### Module 2: Transition and Stability in Communities (7 Hrs)

- 2.1 Succession Basic types (Primary succession, Secondary succession, Autogenic succession, Allogenic succession, Autotrophic succession, Heterotrophic succession).
- 2.2 Trends in succession
- Stages of succession (Nudation, Invasion, Competition and co-action,Reaction,Climax), pulse stability.

2.4 Examples of Succession – (Succession in aquatic and terrestrial ecosystems).

2.5 Relevance of ecosystem development theory to human ecology,

prospects for detritus agriculture, the compartment model.

Module 3: Concepts of Habitat, Niche and Guild (6 Hrs)

Habitat, microhabitat and niche. Different types of niches: spatial niche,

trophic niche, species niche, multidimensional niche, fundamental and realised

niche.

3.2 Niche overlap, Gause's principle, resource partitioning, compression

hypothesis, concept of Guild, character displacement, ecological equivalents.

**Module 4: Species Interactions (9 Hrs)** 

4.1 Intra and interspecific interactions, Types of Interspecific interactions –

(Positive, Negative and Neutral).

4.2 Positive interactions (commensalism, proto-cooperation, mutualism and

pollination).

4.3 Negative interactions (competition, parasitism, amensalism, predation,

herbivory, carnivory).

4.4 Co-evolution

Part II: Ethology [30 Hours]

**Topics for self study** 

History, development and applications; Motivation and models of motivation;

reflexes, imprinting, habituation; neural mechanisms in behaviour; hormones and

behaviour; Sociobiology: social groups – merits and demerits, features of organised groups;

social groups in mammals, social stress; pheromones and chemical communication.

Module 5: Learning (6 Hrs)

5.1 Classification of learning: Imprinting, habituation, imitation (self

study), classical conditioning, instrumental/operant conditioning,

cognitive learning, latent learning, insightful learning.

Module 6: Nervous System and Behaviour (8 Hrs)

34

- 6.1 Stimulus filtering, sign stimulus, innate release mechanism and fixed action plans (FAPs).
- 6.2 Brain centres and learning, neural mechanism of learning and memory.

#### **Module 7: Complex Behaviour Patterns (8 Hrs)**

- 7.1 Orientation, Navigation and homing.
- 7.2 Migration (Fishes and birds).
- 7.3 Biological rhythms biological clock, circadian, circannual, lunar, tidal and seasonal periodicities, sleep and arousal, genetics of biological rhythms.

#### Module 8: Environment, genetics and Evolution of behaviour (8 Hrs)

- 9.1 Habitat selection and territoriality.
- 9.2 The Evolution of communication; Development of bird song.
- 9.3 The evolution of reproductive behaviour and mating systems.

#### Part III: Biodiversity [40 Hours]

#### Module 9: Biodiversity (15 Hrs)

- 9.1 Introduction: Definition, levels of biodiversity (genetic diversity, species diversity and ecosystem diversity), values of biodiversity (self study).
- 9.2 Diversity indices: Alpha diversity, Beta diversity and Gamma diversity; the species diversity and ecosystem stability.
- 9.3 Biodiversity in India: Major biogeographic zones of India; India as a mega diversity nation; hot spots of biodiversity characteristics; an outline of the features and biodiversity of hot spots in India (Western Ghats and Eastern Himalaya).
  - 9.4 Features, structure and biodiversity of some of the Indian ecosystems:
    Terrestrial ecosystems (forest, grassland, desert), Aquatic ecosystems fresh water, marine, estuarine).

#### Module 10: Conservation Biology (13 Hrs)

- 10.1 Depletion of biodiversity: Current estimates of species loss, causes of biodiversity loss, impacts of biodiversity loss, Strategic species concepts: Keystone species, indicator species and umbrella/flagship species.
- 10.2 Strategies of conservation: *in situ* and *ex situ* conservation, Gene Banks, establishment of protected areas, habitat conservation, captive breeding, pollution control, legislative conservation, creating public awareness and other relevant measures.
- 10.3 An evaluation of the "Project Tiger" and "Project Elephant" programmes.
- 10.4 World conservation strategy (1980)
- 10.5 National Biodiversity Action Plan 2008: a brief outline of objectives & plans

# Module 11: International Conventions & Treaties for Conservation of Biodiversity (12 Hrs)

- 11.1 Stockholm declaration on human Environment (1972), Convention on Regulation of Antarctic Marine Resources Activities (RAMRA, 1986), Moduleed Nations World Charter for Nature (1982), Kyoto Protocol and Framework Convention on Climate Change (UNFCCC). Brundtland Report (1987).
- 11.2 Earth summit (1992) detailed study Rio Declaration on Environment and Development, Agenda 21, Forest Principles, Convention on Biological Diversity.
- 11.3 Species based treaties: Migratory Bird Treaty Act (MBTA) of 1918, International Convention for the Regulation of Whaling (ICRW), Washington, 1946, Convention for the Conservation of Antarctic Seals, 1972, Convention on International Trade on Endangered Species (CITES, 1975),
- 11.3 Ecosystem based treaty: Ramsar Convention (1981) Ramsar sites in India and Kerala

#### References

# **Ecology & Biodiversity**

- 1. Beck, W.S., Liem, K.F. & Simpson, G.G. (1991). *Life: An Introduction to Biology* (3<sup>rd</sup> Ed.). Harper Collins Publishers, New York, pp 1361. ISBN: 0 06 500009 9.
- 2. **Bharucha, E.** (2005). *Textbook of Environmental Studies*. Universities Press (P) Ltd, India, pp 276. ISBN 81 7371 540 8.
- 3. Chapman, J.L. & Reiss, M.J. (). *Ecology: Principles and Applications* (2d Ed.). Cambridge University Press, UK. ISBN: 0 521 00575 2.
- 4. **Charry, S.N.** (2008). *Environmental Studies*. MacMillan India Ltd. ISBN: 10: 0230 63531 8, 13: 987 0230 6351 9.
- 5. **Cunningham, W.P. & Cunningham, M.A**. (2003). *Principles of Environmental Science inquiry and Applications*. Tata McGraw Hill Publishing Company Ltd, New Delhi. ISBN 0 07 058112 6.
- 6. **Donald Van DeVeer & Christine Pierce** (). *The Environmental Ethics & Policy Book* (3<sup>rd</sup> Ed.). Wadsworth-Thomson Learning, Canada. ISBN: 0 534 56188 8.
- 7. **Emmel, T.C.** (1976). *Population Biology*. Harper & Row Publishers, New York. ISBN 0 06 041904 0.
- 8. **Gaston, K.J. & Spicer, J.I.** (1998). *Biodiversity: An Introduction*. Blackwell Science Ltd., London. ISBN 0 632 04953 7.
- 9. Hickman, C.P., Roberts, L.S., Larson, A. & Anson, H. (2004). *Integrated Principles of Zoology*. McGraw Hill Company, New Delhi, pp872. ISBN: 0 07 243940 8.
- 10. **Kormondy, E.J.** (2008). *Concepts of Ecology*. Dorling Kindersely (India) Pvt. Ltd., pp 576. ISBN 81 317 0744 X.
- 11. Odum, E.P & Barrett, G.W. (2006). *Fundamentals of Ecology*. Thomson/Brooks and Cole, India, pp 598. ISBN: 81 7648 552 7.
- 12. **Pianka, E. R.** (2000). *Evolutionary Ecology*. Sixth Edition. Benjamin-Cummings, Addison-Wesley-Longman, San Francisco, pp 528. ISBN: 10: 0321042883.
- 13. **Rajalekshmi. V.** (2004). *Environment and Sustainable development*. APH Publishing Corporation, New Delhi, ISBN: 81 7648 552 7.
- 14. **Richard Brewer** (). *The science of Ecology* (2<sup>nd</sup> Ed.). Saunders College Publishing, USA. ISBN: 0 03 096575 6.
- 15. Russell, P.J., Starr, C., Wolfe, S.L., Hertz, P.E. & Mcmillan, B. (2009). *Ecology*. Cengage Learning Private Limited, pp 532. ISBN-13: 9788131508503.
- 16. **Townsend, C.R., Harper, J.L. & Begon, M.** (2000). *Essentials of Ecology*. Blackwell Scientific Publishers, Massachusetts, pp 552. ISBN: 0 632 04348.
- 17. Eldon, D.E. & Bradley, F.S. (2006). *Environmental Science A study of Interrelationships* (12<sup>th</sup> Ed). McGraw-Hill Higher Edition. ISBN: 007252829x.
- 18. Manuel C. & Molles Jr. (2009) *Ecology: Concepts and Applications* (5<sup>th</sup> Ed). McGraw-Hill International Education. pp 604. ISBN-13: 9780070171688

#### **Ethology**

- Alcock, J. (2001): Animal Behaviour- An Evolutionary Approach (7<sup>th</sup> Ed.) Sinaur Associates, Inc. ISBN-10: 0878930116
- 2. Bear, F.M., Connors, B.W. & Paradiso, M.A. (2001). *Neuroscience, exploring the brain* (2<sup>nd</sup> Ed). Lippincott Williams & Wilkins, Baltimore, pp 855.

- ISBN: 0 683 30596 4
- 3. Gleitman, H., Fridulund, A.J. & Reisberg, D. (1998). *Psychology* (2<sup>nd</sup> Ed.). W.W Norton & Company, Inc., New York, pp 849. ISBN: 0 393 97364 6.
- 4. **Bradbury, J.W. & Vehrencamp, S.L**. (1998). *Principles of animal communication* (2<sup>nd</sup> Ed). Sinauer Associates, Inc., Sunderland, Massachusetts, USA.
- 5. **Clutton-Brock, T.H.** (1991). *The evolution of parental care*. Princeton University Press, Princeton, NJ, USA. Pp 368. ISBN: 9780691025162
- 6. **Eibl-Eibesfeldt, I**. (1970). Ethology: *The Biology of Behavior* (1<sup>st</sup> Ed). Holt, Rinehart and Winston, Inc., New York. ISBN-10: 0030731305
- 7. Gould, J.L. (1982). *Ethology: The mechanisms and Evolution of Behaviour*. W. W. Norton & Company, Inc., New York. ISBN-10: 0393014886
- 8. **Gadagkar, R.** (1998). Survival Strategies-Cooperation and Conflict in Animal Societies. Universities Press, Hyderabad, India. ISBN(13): 9788173711145
- 9. Goodenough, J., McGuire, B. & Wallace, R.A. (1993) *Perspectives on Animal Behavior*. John Wiley & Sons, Inc., New York.
- 10. Halliday, T.R. & Slater, P.J.B. (Eds.) (1983). *Animal Behaviour Vol.2: Communication*. Blackwell Scientific Publications, Oxford.
- 11. Halliday, T.R. & Slater, P.J.B. (Eds.) (1983). *Animal Behaviour Vol.3: Genes, Development and Learning*. Blackwell Scientific Publications, Oxford.
- 12. **Hauser, M.D**. (1996). *The evolution of communication*. MIT Press, Cambridge, Mass. USA. pp 760. ISBN 0-262-08250-0
- 13. Krebs, J.R. & Davies, N.B. (1993). *An Introduction to Behavioural Ecology* (3<sup>rd</sup> Ed.). Blackwell Scientific Publications, pp 420. ISBN-10: 0632035463
- 14. **Manning, A. & Dawkins, M.S.** (1998). *An Introduction to Animal Behaviour*. (5<sup>th</sup> Ed.) Cambridge: Cambridge University Press. ISBN 0521578914
- 15. **Slater, P. & Halliday, T.** (Eds.). (1994): *Behaviour and Evolution* (1<sup>st</sup> Ed.) Cambridge University. Press. Pp 348.

#### Module 1 Introduction to Immune System

(4 hrs)

- 1.1 Types of immunity, innate and acquired immunity; passive and active immunity; humoral and cell-mediated immunity.
- 1.2 Organs of immune system: Primary and Secondary lymphoid organs.
- 1.3 Brief account on immune cells: types and production.

# Module 2 Immunogens (Antigens)

(7 hrs)

- 2.1 General properties, Structure and function, variability and diversity.
- 2.2 Factors affecting antigenicity.
- 2.3 Epitopes and Haptens.
- 2.4 Adjuvants and their role in enhancing immunogenecity.

# Module 3 Immunoglobulins (antibodies)

(8 hrs)

- 3.1 General Properties-Structure and functions
- 3.2 Different classes of immunoglobulines (1gA, 1gD,1gE,1gG and 1gM)
- 3.3 Genetic basis of antibody diversity:

Immunoglobulin gene organization; Gene rearrangement and expression.

- 3.3.1 Somatic recombination: V (D) J recombination and functional diversity
- 3.3.2 Somatic hyper mutation
- 3.3.3 Class switching
- 3.4 Polyclonal & Monoclonal antibodies
- 3.5 Hybridoma technology technique and applications

# Module 4 Antigen-antibody interactions

(6 hrs)

- 4.1 Primary and secondary immune responses
- 4.2 Theories of antibody formation (Directive theory, clonal selection theory etc.)

# Module 5 Complement System

(4 hrs)

- 5.1 Complement systems-General features
- 5.2 Classical and alternate pathways, complement receptors, biological effects of complement.

#### Module 6 Transplantation

(7 hrs)

- 6.1 Classification of grafts
- 6.2 Major Histocompatibility Complex (MHC) and MHC proteins; role in tissue transplantation; Mechanism of graft retention and rejection.
- 6.3 General immunosuppressive therapy.

#### Module 7 Defects in Immune Mechanisms

(6 hrs)

- 7.1 Defective innate immune mechanisms
- 7.2 Auto immune diseases

#### **Developmental Biology**

(60 Hrs)

#### Module 1 Introduction

(4 hrs)

- 1.1 Definition, history, Scope of embryology and Practical applications (self study)
- 1.2 The evolution of developmental patterns in unicellular protest; origin of sexual reproduction. Developmental patterns among animals-brief survey (asexual means; parthenogenesis; sexual means; gonochorism, hermaphroditism, metamorphosis, uterine development in mammals)

#### Module 2 Fertilization

(8 hrs)

- 2.1 Events in fertilization
  - 2.1.1 Cytoplasmic changes
  - 2.1.2 Nuclear changes
- 2.2 Prevention of polyspermy
- 2.3 Significance of fertilization

#### Module 3 Developmental Model Systems

(16 hrs)

- 3.1 Early development of *Drosophila*-Egg, cleavage, mid-blastula transition, gastrulation
- 3.2 Early development of *Caenorhabditis elegans*-Egg, cleavage and gastrulation.
- 3.3 Genetic control of development and embryonic axis formation.
  - 3.3.1 Gene action in development of Drosophila:- Maternal effect genes;
    Segmental genes (gap genes, pair-rule gene and segment polarity gene)
    and Homeotic genes (homeobox and homeodomains)
  - 3.3.2 Hox cluster genes in vertebrates

#### Module 4 Embryonic Induction

(10 hrs)

- 4.1 Types of embryonic induction Primary, Secondary and Tertiary Induction (Experiments of Spemann and Mangold) (self study)
- 4.2 Mechanism of axis formation in amphibians; Niewkoop centre.
- 4.3 The functions of organizer; the diffusible proteins of the organizer 1; the BMP inhibitors.
- 4.4 Stem cells, totipotency, pleury potency

#### Module 5 Medically assisted human reproductive technologies

(12 hrs)

- 5.1 Conventional in vitro fertilization and embryo transfer (IVF-ET) general protocol (Patient selection, manipulation of menstrual cycle, superovulation, oocyte retrieval, preparation of semen sample, IVF treatment, embryo transfer.
- 5.2 Gametic Instrafallopian Transfer (GIFT)
- 5.3 Zygotic Intrafallopian Transfer (ZIFT)
- 5.4 Tubal Embryo stage Transfer (TET)
- 5.5 Intra-cytoplasmic sperm injection (ICSI)
- 5.6 Intra Uterine Insemination (IUI)

#### Module 6 Cloning experiments in animals

(10 hrs)

- 6.1 Genomic equivalence; multiple potencies; differential gene expression.
- 6.2 Amphibian cloning, cloning mammals, human cloning-prospects and demerits.

#### **REFERENCES**

# **Developmental Biology**

- 1. Scott, F. Gilbert, (2000) Developmental biology, Sinauer Associates, Inc., Publishers, Massachusetts.
- 2. V.R. Walvekar, M.J.Jassawalla, P.H.Anjaria and R.J. Wani, Reproductive Endocrinology- A Clinical approach.
- 3. K. Vasudeva Rao, Developmental Biology a modern synthesis.
- 4. R.M. Twyman, Developmental Biology
- 5. Lewis Wolpert, et al., (2000) Principles of Development, Oxford University Press.
- 6. Balinsky, B.I, An Introduction to Embryology
- 7. D.J.Bejley, J.A. Firth, J.R.F.Houtt, Human Reproduction and Developmental Biology

# Immunology

- 1. Roitt, L, Brostoff, J and Male, D., Immunology
- 2. Ashim K Chakravarthy, Immunology
- 3. M.K. Majumdar, Microbiology and immunology
- 4. Kudy (2000) Immunology. W.H. Freeman and Company.
- 5. Lydyard, P.M., Whelan, A., and M.W.Fanger (2002). Instant Notes in Immunology, Viva Books Private Limited.
- 6. Janeway, Travens, (1996) Immunobiology. Current Biology Ltd., Middle Sex House 34-42 Cleveland Street, London.

### **PRACTICAL**

# ZO 234 - Microbiology, Biotechnology, Ecology, Immunology & Developmental Biology

# Microbiology & Biotechnology

- Techniques for Isolation of bacteria serial dilution, pour plate, spread plate techniques.
- 2. Enumeration of bacteria from water and soil.
- 3. Motility Testing hanging drop method.
- 4. Gram staining.
- 5. Determination of quality of milk methylene blue reductase test.

- 6. Biochemical tests catalase test, kovac's oxidase test, gas production etc.
- 7. Isolation of DNA from plant/animal tissue.
- 8. Plasmid isolation.

# **Immunology**

- 1. Antigen-antibody interaction in vitro and identification of blood groups.
- 2. Blood film preparation and identification of cells.
- 3. Detection of pregnancy using kits.
- 4. Immunodiffusion and Immunoelectrophoresis

# **Developmental Biology**

- 1. Induced ovulation and artificial fertilization.
- 2. Preparation of temporary whole mounts of chick blastoderm
- 3. Vital staining of chick blastoderm and tracing the development of stained parts (window method)
- 4. Effect of drugs on heart beat of chick embryo.
- 5. Study of different types of eggs: insect egg, frog's egg, hen's egg, mammalian egg- using models/charts
- 6. Morphological and histological studies of different placental types of mammals (3 numbers)
- 7. Identification of cross sections of chick embryo through heart, eye and ear.

#### **Ecology**

- 1. Estimation of pyramid of numbers and biomass in a small ecosystem.
- 2. Estimation of Primary productivity using dark and light bottles.
- 3. Description of ecological adaptations of any 10 organisms.
- 4. Habituation in *Pila* / alarm response in ants or fishes / maize learning in rats.
- 5. Study of biodiversity indices:
  - a. Population
  - b. Density and relative density
  - c. Frequency and relative frequency
  - d. Abundance and distribution
  - e. Modified similarity Index
  - f. Shannon-Wiener Index
- 6. Composition assessment of the Taxonomic diversity/biodiversity in a habitat (grass land, wet land, etc.).

- 7. Assessment of Invertebrate and Vertebrate diversity in your locality (e.g. campus).
- 8. Quantitative estimation of planktons.
- 9. Poster Presentation on a relevant topic (e.g. International conventions and treaties, species interactions, biodiversity loss, etc.).

#### **SEMESTER-IV**

# Special Subject: Endocrinology Z0 241 VERTEBRATE ENDOCRINOLOGY Total hours: 100

#### Module I Introduction

Historical perspective

2. General Classes of chemical messengers – definition - short account

Peptide hormones, steroid hormones, bioamines, eicosanoids, chalones, neurotransmitters, neuropeptides, neurosteroids, neurohormones, lumones, Phytohormones, synthetic hormones.

# Module 2. Vertebrate endocrine glands

(30hrs)

( 5 hrs)

- 1. Morphology and anatomy of endocrine glands
- 2. Biosynthesis of hormones (Mention key enzymes)
- 3. Functions of hormones
- 4. Disorders of hormonal imbalance
- 5. Hypothalamus and its secretions
- 6. Hypothamo-hypophysial interaction.
- 7. Eicosanoids Biochemistry and biological action. Prostaglandins, prostacyclins, thromoboxanes, leukotriens.
- 8. A brief account the evolution of endocrine glands

# Module 3. Mechanism of hormone action

(30hrs)

- 1. General and Molecular mechanism of action of amines, polypeptide and steroid Hormones
- 2. Hormone receptors Receptors as mediators of endocrine signals Classification of endocrine receptors. Measurement of receptor ligand interaction.
- 3. Cell surface receptors (Mode of action of peptide hormones) Receptor structure Regulation of receptor number.
- 4. Second messengers of hormonal action

Cyclic nucleotides; Inositol triophosphate; Diacyl glycerol; Genomic action of cAMP

- 5. Signal transuction G proteins and dual control of adenylate cyclase; Receptor crosstalk
  - 6. Receptor with tyrosine kinase activity, serine and threonine kinase activity
  - 7. Receptors that are protein phosphatases
  - 8. Receptors coupled with ligand gated ion channels
  - 9. Direct membrane action of steroid hormones –non genomic action

#### Module 4 Cell growth factors

(5hrs)

- 1. Types of growth factors-mechanism and its functional role in cellular activities:
- 2. Somatomedins IGF: Epidermal Growth Factor (EGF) family; Transforming Growth factor
- 3. βfamily (TGFβ); Platelet derived growth factor (PDGF); Fibroblast growth factor (FGF) Nerve Growth Factor (NGF); Hepatocyte Growth Factor (HGF)

# **Module 5 Hormones and Cancer**

(10hrs)

- 1. Relationship of hormones to carcinogens and development of cancers from inappropriate hormonal treatment
- 2. Hormones related treatment of cancer
- 3. Oncogenes and hormonal function
- 4. Hormone receptor status of Breast Cancer
- 5. Ectopic production of hormones by tumour cells

#### **Module 6 Functional Endocrinology**

(10hrs)

- 1. Role of hormones in behavior of animals
- 2. Hormonal control of reproduction
- 3. Hormonal involvement in evolution
- 4. Influence of hormones in development process

#### Module 7. Endocrine methodology

(10hrs)

- 1. Methods and techniques in endocrine research
- 2. Histological and cytological methods; Surgical methods, Bioassays
- 3. Radio isotopic studies RIA, ELISA, EIA
- 4. Nucleic acid approaches in endocrinology Recombinant DNA techniques and genetic engineering.
- 5. Modern trends in endocrine research

#### References

- 1. Endocrinology Mac.E. Hadley, Prentice Hall. International 2000
- 2. Williams Tex Book of Endocrinology edited by Jean D.Wilson and Daniel W.Foster. Saunders Company 8<sup>th</sup> Edn. 1992.
- 3. Hormones from Molecular to disease Elby-Elienne Erulie Bautieu and Paul A.Kelly 1990.
- 4. Endocrinology Basic and Clinical Principle P, Michael Corn and Shlomo Mel Med. Humana Press. The Totowa. 1997.
- 5. Vertebrate Endocrinology Daniel O Norris. Academic Prss. 3<sup>rd</sup> edn. 1997.
- 6. General and Coparative Endocrinology, Turner and Bangara, Saunders Company.
- 7. Comparative Endocrinology P.J. Bentley. 1997.
- 8. Hormones and Evolution Barrington, 1979.
- 9. Hormones Anthony W. Norman and Gerald Litwark Academic Press. 1997.

# SPECICAL SUBJECT: ENDOCRINOLOGY ZO 242: PHYSIOLOGY OF REPRODUCTION (With special reference to mammals)

Z0 242 Total hours : 100

# Module 1. Foetal and Embryonic Gonads and Genital Ducts

(20 hrs)

- 1. 1. Comparative anatomy of genital system in vertebrates
- 1. 2. Origin of primordial germ cells
- 1.3. Differentiation of the testis: Germinal epithelium, interstitial tissue, Foetal androgens and role
- 1.4. Differentiation of ovary: Foetal estrogens and role
- 1.5. Origin and differentiation of the genital ducts: Wolffian duct, mullerian duct
- 1.6. Hormonal basis of sex differentiation
- 1.7. Histology, cytology and endocrinology of the foetal gonads
- 1.8. Disorders of sexual differentiation development: True hermaphroditism, Pseudohermaphroditism, Chromosomal errors and sex determination Penile agenesis, Double Penis, Bifid Penis, Micropenis, Acruate Uterus, Double uterus.

# Module 2.Physiology of Female Reproduction—I. Ovary & Reproductive cycles (12 hrs)

- 2.1. Anatomy of female reproductive system- Gross anatomy and histology of ovary
- 2.2. Ovarian hormones
- 2.3. Folliculogenesis and oogenesis and their hormonal control
- 2.4. Ovulation- Luteinization, Atresia
- 2.5. Reproductive cycles- Estrus and menstrual cycles- structural changes and hormonal control

# Module 3. Physiology of female reproduction – II. Implantation, Pregnancy and Parturition (12 hrs)

- 3.1. Nidation, Desidualization
- 3.2. Placentation- Types, Placental hormones and their regulation
- 3.3. Physiology of pregnancy Endocrine basis
- 3.4. Development of foetal membranes- Amnion, chorion, allantois and yolk sac
- 3.5. Physiology of parturition and endocrine control

# Module 4. Physiology of female reproduction-III Mammary gland & Lactation (6 hrs)

- 4.1. Infantile mammary gland, Pubertal changes in mammary gland, Structure of adult mammary gland
- 4.2. Synthesis, composition and secretion of milk-galactopoesis- Milk let down
- 4.3. Hormonal regulation of lactation

# Module 5. Physiology of Male reproduction: I. Testis, Reproductive tract and Accessory Reproductive Glands (15 hrs)

- 5.1. Anatomy of male reproductive system- Testis, Vasa efferentia, Epididymis, Vas Deferns, Ejaculatory ducts, Urethra, Penis
- 5.2. Accessory sex glands- Seminal vesicles, Prostate gland and Cowper's glands- Structure, cytology and functions
- 5.3. Histology of testis- Sertoli cells, Leydig cells and rete testis structure and functions
- 5.4. Male sex act
- 5.5. Temperature regulation of testicular function
- 5.6. Testicular hormones- Androgens

# Module 6. Physiology of Male Reproduction - Spermatology

(10 hrs)

- 6.1. Spermatogenesis and its hormonal control
- 6.2. Structure of a typical mammalian sperm, Comparative morphology of sperms of mammals
- 6.3. Physiological maturation of sperm initiation of motility and capacitation
- 6.4. Sperm motility and energetic- Factors affecting sperm motility
- 6.5. Biochemistry of semen

#### Module 7. Reproductive Behaviour

(7hrs)

- 6.1. Concept of puberty
- 6.2. Adolescence- Somatic changes, psychological changes and hormonal changes
- 6.3. Senescence
- 6.4. Menopause

#### Module 8. Fertility regulation and Reproductive toxicology

(8 hrs)

- 8.1. Disorders of male and female reproductive systems- Sexual dysfunction
- 8.2. Infertility in males and females causes and curative measures
- 8.3. Birth control devices
- 8.4. Reproductive toxicology effects of chemicals, drugs and alcohol on reproduction
- 8.5. Fertility regulation in farm animals

# Module 9. Reproductive Health

(10 hrs)

- 9.1. Sex Education and its importance
- 9.2. Adolescent sexual activity and adolescent stress management
- 9.3. Sexual harassment and its impacts
- 9.4. Sexually transmitted diseases

#### References:

1. Essentials of Medical Physiology, Leonard R. Johnson (Ed.), Academic Press.

- 2. Physiology of reproduction Vol.I & II. Edited by E. Knobi & J.D. Neill. Raven Press, New York. 1994.
- 3. Human Reproductive Biology R.E. Jones, Academic Press, London . 1997.
- 4. Comparative Endocrinology and Reproduction Joy KP. Krishna A, Haldar L, Narosa Publishing HJouse, New Delhi. 1999.
- 5. Male infertility and Sexual Dysfunction W.J.G. Hellstrom, Springer-Verlag, New York. 1997.
- 6. Reproduction in Mammals. Vol.I and II. Edited by C.R. Austine & R.V. Short Cambrige University Press, London. 1986.
- 7. Principles of Vertebrate Reproductive Biology HBD Sarkar, Himalaya Publishing House. 1993.
- 8. Current Concepts in Fertility Regulation. Edited by C.P. Puri and P.F. A. Van Look. Wiley Eastern Ltd. 1994.
- 9. Principles of Anatomy and Physiology , Vol II; G.I. Tortora and B.H. Derrickson , John Wiley& Sons Inc.

# Semester IV Special Subject: Endocrinology

#### Practical I

# Zo243 Physiology of Reproduction with special reference to Mammals

- 1. Histology of testes of fish, calotes, chick and rat (any two animals)
- 2. Histology of ovary of fish, calotes, chick and rat (any two animals)
- 3. Dissection of male & female reproductive system of any suitable animal
- 4. Vaginal smear of rat
- 5. Sperm smear of any one vertebrate
- 6. Demonstration of induced ovulation in any one vertebrate

# Zo244 Practical II Vertebrate Endocrinology

- 7 Dissection of endocrine glands in fish, calotes, chick and rat (any two animals)
- 8. Demonstration of glandectomy experiments in any two vertebrates
- 9. Simple experiment to study the effect of thyroxine, insulin and cortisol on blood glucose/total protein in fish or of any suitable animal
- 10. Preparation of single cell suspension of any one tissue for in vitro study
- 11. Histological study of endocrine gland using haematoxylin eosin stain in any two vertebrates
- 12. Disorders of endocrine glands (5 numbers for short notes)

# SPECIAL SUBJECT: FISH BIOLOGY AND FISHERY SCIENCE ZO 241: ICHTHYOLOGY

# Module 1. Classification and distribution of fishes (10 Hours)

- 1.1. Scope and history of Ichthyology (self study)
- 1.2. Geographical distribution of fishes in marine and freshwater habitats
- 1.3. Distribution of fishes in marine and freshwater habitats in India and Kerala
- 1.4. Classification of fishes up to family- distinguishing characters with examples
- 1.5. Barcoding in fish taxonomy

# Module 2. Adaptation of fishes to special conditions (10 Hours)

- 2.1. Deep sea fishes
- 2.2. Cave dwelling fishes
- 2.3. Hill stream fishes
- 2.4. Air breathing fishes
- 2.5. Venomous fishes
- 2.6. Larvicidal fishes and biological control
- 2.7. Schooling in fishes

#### Module 3. Functional morphology and bionomics of fishes (15 Hours)

- 3.1. Gross external anatomy of fishes
- 3.2. Body form diversity
- 3.3. Fins- types structure, function and modifications
- 3.4. Skin-structure and function
  - 3.4.1. Scalation- types of scale, structure, development and modifications
  - 3.4.2. Colouration-types of chromatophores, biological significance

# Module 4. Food, feeding, digestion and growth in fishes (10 Hours)

- 4.1. Basic anatomy of digestive system of a cartilaginous and a bony fish
- 4.2. Food and feeding habits- natural food, feeding habit and adaptations; feeding in relation to season ,growth, sex and breeding; gastro-somatic index
- 4.3. Digestion absorption and utilization of food
- 4.4. Growth in fishes- length and growth relationship, growth curve and growth studies using scales and condition factor

# Module 5. Excretion and osmoregulation (5 Hours)

- 5.1. Brief account of structure and function of kidney
- 5.2. Hormonal control of excretion and Osmoregulation

#### Module 6. Locomotion (10 Hours)

- 6.1. Types of locomotion-swimming and non-swimming
- 6.2. Body form and locomotion
- 6.3. Fins and locomotion
- 6.5. Fins and locomotion
- 6.6. Swim bladder and buoyancy- origin and function
- 6.7. Weberian ossicles and its significance

#### Module 7. Sense organ in fishes (10 Hours)

- 7.1. Lateral line sense organs, Ampullae of Lorenzini,
- 7.2. Chemo, mechano, thermo, and electro receptors
- 7.3. Structure of eye and visual pigments

#### Module 8. Endocrine glands in fishes (10 Hours)

8.1. Structure and function of – Pituitary gland, ultimobranchial gland, Caudal neuro-secretary cells, urophysis, corpuscles of stannous, Inter renal tissue and chromaffin tissue, islets of Langerhans, thyroid gland, gonad and pineal organ

# Module 9. Reproduction in fishes (10 Hours)

- 9.1. Sexuality- hermaphroditism, unisexuality and bisexuality
- 9.2. Gonads- phases of maturity, length at first maturity, gonado-somatic index, fecundity
- 9.3. Reproductive behavior-sexual dimorphism, courtship, parental care, nest building

# Module 10. Fish genetics (10 Hours)

- 10.1. Sex determination in fishes
- 10.2. Recent trends and techniques of hybridization
- 10.3. Chromosome manipulation in fishes
- 10.4. Transgenesis in fishes

# SPECIAL SUBJECT: FISH BIOLOGY AND FISHERY SCIENCE ZO 242: FISHERIES AND AQUACULTURE

#### **FISHERIES**

#### **Module 1. Fishery Science** (15 Hours)

- 1. Importance of Fishery science-Inland fisheries, Marine fisheries, capture fisheries and culture fisheries
- 2. Inland capture fisheries- Riverine fisheries, reservoir fisheries, cold water fisheries and estuarine fisheries
- 3. Marine capture fisheries in India- Offshore and deep sea fisheries- fin fish fishery, shell fish fishery (crustacean and molluscan)

# Module 2. Methods of fishing (10 Hours)

- 2.1 Indigenous fishing crafts of India: sea fishing crafts- Catamaran, Musula boat, caravel boats, Dinghi, Dug out canoes, plank built canoes, out trigger canoes
- 2.2 Inland fishing crafts: Dug out and plank built boats
- 2.3 Mechanised Indian fishing crafts- fishing vessel characteristics
- 2.4 Indigenous fishing gears in India: Traditional and conventional; sea fishing gears and inland fishing gears

#### Module 3. Harvest and Post -harvest Technology (20 Hours)

- 3.1 Harvesting- precautions observed during harvesting, sorting, and grading the catch
- 3.2 Nutritive value of fish and biochemical composition of fish flesh
- 3.3 Fish spoilage and fish preservation
- 3.4 Fish preservation and processing- Icing and freezing, canning, salting, Drying, curing, smoking etc.
- 3.5 Fish products and byproducts- Liver oil, meal, manure, glue, isinglass, Leather, chitosan, fish maws, fish protein concentrate, fish fins
- 3.6 Fish food poisoning

#### **Module 4. Fish Export and Extension** (5 Hours)

- 4.1 Transportation and marketing: Overseas market for diversified products and principal world market for diversified sea food products
- 4.2 Fisheries extention: extension philosophy and extension methodology
- 4.3 The status of Indian fishery co-operative movement and Fish farmers development agencies

#### **AQUACULTURE**

Module 5. Aquaculture (10 Hours)

- 5.1 Scope and objectives of aquaculture; status in India
- 5.2 Culture systems-
- 5.2.1 Criteria for space and site selection
- 5.2.2 Culture systems- Pond, Bheries, salt pans, tanks, race way, cage, pens etc.
- 5.3 Hatcheries- different types
- 5.4 Design and construction of aquafarms

# Module 6. Breeding and seed production (10 Hours)

- 6.1 Bionomics of cultivable species of fish and shellfish (Mullets, milk fish, pearl spot, carps, Penaeus spp., Macrobrachium spp.)
- 6.2 Breeding of fishes with special reference to Indian major carps wet and dry bundh technique for breeding
- 6.3 Induced breeding
- 6.3.1 Induced breeding in Fish Principle , techniques and advantages of hypophysation, selective breeding and seed production
- 6.3.2 Induced breeding in Shrimp- Techniques involved in shrimp breeding and seed production eye stalk ablation etc.
- 6.4 Transport of live fishes- fingerlings and breeders
- 6.5 Cryopreservation of gametes and embryos
- 6.6 Common fish diseases viral, fungal, bacterial and parasitic infections

#### Module 7. Nutrition in culture fishes (3 Hours)

- 7.1 Nutritional requirement of a culture fish
- 7.2 Feed- Live and formulated
- 7.3 Procedure of Feed formulation

#### Module 8. Methods of fresh water and brackish water fish culture (15 Hours)

- 8.1 Monoculture Indian major carps (Catla, Rohu, Mrigal), exotic carps, Tilapia
- 8.2 Composite culture
- 8.3 Culture of air breathing fishes ecology of swamps & use in culturing air breathing fishes
- 8.4 Shrimp culture: traditional and scientific brackish water culture practices in India with special reference to Kerala
- 8.5 Ornamental fish culture- exotic and indigenous species
- 8.6 Aquarium set up and maintenance; Aquarium plants and aquarium accessories
- 8.7 Frog culture

# Module 9. Mariculture in India (7 Hours)

- 9.1 Sea farming and sea ranching
- 9.2 Prawn culture
- 9.3 Pearl culture and culture of edible molluscs
- 9.4 Turtle farming
- 9.5 Sea weed cultivation

# Module 10. Integrated fish culture (5 Hours)

- 10.1 Paddy cum fish culture
- 10.2 Fish-livestock farming- manurial value of livestock wastes and their role in recycling for raising fish production
- 10.3 Sewage fed fish culture

#### Field work

- 1. Visit to freshwater and brackish water fish farms.
- 2. Collection of water & soil samples of fish ponds for analyzing hydrographical parameters.

# Study tour

Visit to fisheries institutes and fishing harbours to study the following:

- 1. Freshwater and brackish water agua culture.
- 2. Fishing operations
- 3. Fish preservation and processing
- 4. Boat building and net making
- 5. Fisheries research, survey, education and extension

# SPECIAL SUBJECT: FISH BIOLOGY AND FISHERY SCIENCE Practical I ZO 243- ICHTHYOLOGY

#### **Taxonomy**

- 1. Identification and classification of 10 local fishes (Marine/freshwater) up to species level
- 2. Identification and classification of 5 prawns up to species level

# **Dissections and mounting**

- 3. Membranous labyrinth
- 4. Ampullae of Lorezini

- 5. Brain
- 6. Scales-Placoid, cycloid, ctenoid.
- 7. Digestive system of a fish (cartilaginous or bony fish)
- 8. Urinogenital system of a teleostean fish
- 9. Pituitary gland

# Fish Physiology

- 9. Effect of NaCl/KCl on fish chromatophores
- 10. Determination of the rate of oxygen consumption of a fish at room temperature
- 11. Determination of gonadosomatic index
- 12. Measurement of fecundity rate in a fish
- 13. Qualitative and quantitative analysis of gut content in a herbivorous and carnivorous fish
- 14. Determination of gastrosomatic index
- 15. Smear preparation of fish blood to study the morphology of different cellular elements
- 16. Differential count of fish WBC

# Fish genetics

- 17. Sex determination in fishes
- 18. Hybridization techniques in fishes
- 19. Karyotyping in fishes

# SPECIAL SUBJECT: FISH BIOLOGY AND FISHERY SCIENCE Practical II ZO 244 – Fisheries and aquaculture

# Fish pond ecology

- 1. Determination of nutrients in the water samples from freshwater and brackish water ponds (Phosphat/sulphate/nitrate)
- 2. Determination of free calcium carbonate in the soil sample from freshwater and brackish water ponds
- 3. Determination of LC<sub>50</sub> for fish exposed to a given pollutant

# **Fish Pathology**

4. Identification of common external fish parasites (At least 5 numbers)

- 5. Estimation of spoilage in fish by pH method
- 6. Determination of bacterial plate count for fish skin, flesh and gut

#### **Breeding Techniques**

- 7. Mounting of pituitary gland
  - 8. Preparation of pituitary gland extract
  - 9. Demonstration of hypophysation technique
  - 10. Demonstration of artificial insemination
  - 11. Demonstration of sperm motility in a fish
  - 12. Preparation of a formulated fish feed

# Fish byproducts

- 13. Identification and study of fish byproducts
  - 14. Preparation of any one fish by product
  - 15. Estimation of muscle protein
  - 16. Estimation of muscle glycogen

# Fishing crafts and gear

- 17. Identification and study of different types of fishing crafts (Minimum 5 numbers)
  - 18. Identification and study of different types of fishing gears (Minimum 5 numbers)
  - 19. Setting up of an aquarium
  - 20. Study of aquarium accessories
  - 21. Study of common aquarium plants(Minimum 5 numbers)

# References (Indira Teacher - to be split as per existing syllabus and placed after each paper)

- 1. Ali, M.(1980) Environmental Physiology of fishes. NATO advanced Study Institute series. Series A: Life sciences, vol. 35, Plenum Press, New York.
- 1. Bal, D.V. and Rao, K.V.(1989). Marine Fisheries. Tata Mac Graw Hill Publishing Co., Delhi.
- 3. Biswas, K.P. (1996). A text book of fish, fisheries and technology. Narendra Publishing House, Delhi.
- 4. Balakrishnan, N. and Thampy D.M. (1990) A text book of marine ecology. Macmillan Co., India
- 5. Barnes, R.S.K and Mann, K.H.(1980). Fundamentals of aquatic ecosystems. Blackwell Scientific Publications, Oxford and London.

- 6. Beavan, R. (1990). Freshwater fishes of India Low price Publications, Delhi.
- 7. Biswas (1993). Manual of methods in fish biology. South Asian Publishers Ltd., Delhi.
  - 8. Boyd, C.E.(1979). Biology of fishes. Saunders Publ., Philadelphia
- 9. Boyd, C.E. (1982). Water quality management for pond fish culture: developments in aquaculture and fisheries sciences-9, Elsevier, Amsterdam.
- 10. Bye, V. J. and Ponniah, A.G. (1983). Application of genetics in aquacvulture. CMFRI special publication, No.13, CMFRI, Cochin.
- 11. Charles, T. Cutting (1996). Fish processing and preservation. Agro Botanical Publishers, Bikaner.
- 12. Claude E Boyd, (1984). Water quality management in aquaculture, CMFRI special Publication, No.22.
  - 13. Cushing, D.H. 1980 Marine ecology and fisheries. Cambridge University Press
- 14. Das, P. and Jhingran, A.G. (1989). Fish genetics in India. Today and tommrrow's Printers and publishers, New Delhi.
- 15. Datta Munshi, J.J. and H.M. Dutta(1995). Fish morphology: Horizon of new research, Oxford and IBH Publishing Co., Pvt. Ltd.
- 16. Gahlawat, S.K. and R.K. Gupta (2007). Manual of experimental Ichthyology, Daya Publishing House, New Delhi.
- 17. Gerhard Brunner, (1973). Aquarium plants, TFH. Publications, Inc. Ltd., Hong Kong.
- 18. Gupta, S.K. and P.C. Gupta (2006). General and applied Ichthyology, S. Chand and Co. New Delhi
- 19. Halver J.E. (1977). Fish nutrition. Academic press, London.
- 20. Harvey, BJ and Hoar W.S. (1979) .Theory and practice of induced breeding in fish. International Development Research Centre, Ottawa.
- 21. Hoar, W.S. and Randall, D.J. (1969-1988). Fish Physiology. Vols.I-X., Academic press, New York.
- 22. Jayaram, K.C.(1981). The freshwater fishes of India, Pakistan, Bangladesh, Burma and SriLanka- a hand book. Zoological survey of India, Calcutta.
- 23. Jhingran, V.G.(1991). Fish and fisheries of India. Hindustan Publishing Corporation (India), New Delhi.
- 24. John, S. Lucas and Paul C. Southgate(2000) Farming aquatic animals and Plants. Fishing News Books, Blackwell publishing co.,
- 25. Jorgen Hansen, (1979). Making your own aquarium, Bell and Hyman Ltd. London
- 26. Lagler, K.F., Bardach, J.E., Miller, R.R. and D.R. May Passino (2003). Ichthyology, John Wiley and sons (Asia) Pvt. Ltd., Singapore.
- 27. Love. R.M.(1970). Chemical Biology of fishes, Academic Press, London
- 28. Madhusoodana Kurup, B (Ed.) (2008).Ornamental fish-Breeding, Farming and Trade. Department of fisheries, Govt. of Kerala.
- 29. Nelson J.S.(2006). Fishes of the world (4<sup>th</sup> Ed.), John Wiley and sons, New Jersy.
- 30. Paul, J.B and John D.Reynold (Eds.)(2002). Hand book of Fish Biology and Fisheries. Blackwell Science Ltd., U.K.
- 31. Pillai, T.V.R.(1993). Aquaculture: Principles and Practices, Fishing News Books, USA.
- 32. Santhosh Kumar and Manju Tembhre, (1998). Anatomy and physiology of fishes, Vikas publishing house Pvt. Ltd., New Delhi.
- 33. Sreekrishna Y. and Latha shenoy( 2000 ). Fishing gear and craft technology, ICAR, New Delhi.

- 34. Stephen Spotte, (1970). Fish and invertebrate culture- water management in closed system, John wiley and sons, Inc., New York.
- 35. www.FISH.BOL.ORG
- 36. http://mail.nbfgr.res.in/fbis/

# **Semester IV**

# **Special Subject-Insect Science**

ZO 241 General Entomology Total 100 hrs

Unit 1 Introduction (6 hrs)

- 1.1 Origin and Evolution of insects.
- 1.2 Fossil Insects
- 1.3 Insect-plant interdependence (Co-evolution)

Unit 2 Anatomy (22 hrs)

- 2.1 Integument: Histology of the basic components, Chemical composition of cuticle, sclerotization, physical properties of the cuticle, coloration, permeability characteristics, moulting and external integumentary process.
- 2.2 Head-Segmentation-Structure and modifications
- 2.3 Thorax-Segmentation-Structure-and modifications.
- 2.4 Abdomen-Segmentation-structure-and Characteristics
- 2.5 Wings-Origin and evolution of wings, venation-structure.
- 2.6 Appendages-segmentation-structure-Adaptive radiation of legs.

# **Unit 3 Embryogenesis**

(22 hrs)

- 3.1 Formation of blastoderm and germ cells, formation of germ band & extra embryonic membranes
- 3.2 Differentiation of germs layers.
- 3.3 Segmentation, Appendage formation and blastokinesis, organogenesis, polyembryony, control of embryogenesis, Oviparity, Viviparity, Oviposition, eclosion, postembryonic morphogenesis.
- 3.4 Growth, metamorphosis, endocrine mechanisms in metamorphosis.

#### **Unit 4 Insect Classification**

(10 hrs)

- 4.1 Biology and habits of the different orders of insects-classification upto families.
- 4.2 Biology and habits of aquatic gall forming and leaf-minig insects.
- 4.3 Adaptations of parasitic and predatory insects
- 4.4 Seasonal Adaptations-Dormancy-Diapause

# **Unit 5 Insect Physiology**

(30 hrs)

- 5.1 Insect nutrition: Anatomy and histology of foregut mid and hind gut. Modification of gut (filter chamber)
  - Process of secretion of enzymes, Microbiota&digestion of wood, Keratin wax and silk.
- 5.2 Respiratory system: Trachea, Tracheoles, Air sacs, Spiracles.

Types of ventilatory process-Passive ventilation bulk flow and active ventilation.

Passive suction ventilation and elimination of CO2 Ventilation in aquatic insects, end parasitic insects and during mounting.

- 5.3 Central nervous control of ventilation.
- 5.4 Circulatory system: The dorsal vessel & accessory pumping sir uses.

Cardiac regulation & Circulation-General characteristics and chemical composition of haemolymph, haemocytes, Origin, number and function. Other tissues associated with circulatory system.

- 5.5 Excretory system: Malpighian tubles-anatomy and histology, Orthopteran, Hemipteran, coleopteran and lepidopteran types. Salt and water balance, control of diuresis and gut mobility, nitrogenous excretion, insect urine.
- 5.6 Nervous system, glandurar and muscular systems.
- 5.6.1 Structure and function of the nervous system, nervous integration.
  - 5.6.2 Exocrine and endocrine glands and their functions
  - 5.6.3 Skeletal muscle, visceral muscle, muscle, muscle development and maintenance
- 5.7 Sense organs: Morphology of sense organs; sensory mechanisms, light and sound production
  - 5.7.1 Mechnoreception- The tactile sense, proprioceptive sense, sound perception.
  - 5.7.2 Chemoreception-Sensory coding phago stimulants and phagodeterrents
  - 5.7.3 Thermoreceptores-Hygroreceptors.
  - 5.7.4 Photoreception-Compound eyes, dorsal ocelli etc,.
  - 5.7.5 Light production and sound production.
- 5.8 Reproduction and morphogenesis.
  - 5.8.1 Reproductive system and Gametogenesis in male and female.
  - 5.8.2 Fertilization, Sex determination, parthenogenesis

#### **Unit 6 Insect Communication**

(10 hrs)

- 6.1 Acoustic, Visual, tactile and chemical methods.
- 6.2 Role of hormones in communication
- 6.3 Pheromones

- 6.4 Kairomones
- 6.5 Allomones
- 6.6 Insect immunity.

#### References

- 1. Imms A.D, Richard&Davies: A general text bood of Entomology, Champman&Hall.
- 2. Mani.M.S. 1982 A general Text Book of Entomology. Oxford&IBM New Delhi.
- 3. Ross.M.M et.al.Text book of Entomology. John Wiky sons, New York.
- 4. Berror&Delong: Insects.
- Kerkut, G.A& Gilbert & LI 1985 Comprehensive. Insect Physiology, Biocheistry & Pharmacology.
- 6. Rockstein, N. The physiology of Insects Vol. IV Academic Press, New York.
- 7. Wigglesworth, V.B. The Priciples of Insect. Physiology, & LBS, Methmen& Co. Ltd.
- 8. Champman, R.E. The insects-Structure and functions, ELBS Arnord
- 9. Beanent, J.W.L, Trechene C.T.& Wigglesworth V.B. Advances in insect physiology Academic Press. New York.
- 10. Insect Hormones. V.J.A.Novak.
- 11. Modern Entomology. D.B Tembhare.
- 12. Phermones.M.C.Birch
- 13. Biology of Insect midgut.M.J. Lehane
- 14. Recent Advances in Insect. Physiology and Toxicology. G.T. Gujar
- 15. General and Applied Entomology, K.K. Nayar et.al.

# **ZO 242** Applied Insect Science Hours 100

#### **Unit 1 Introduction Insect Pests**

(5 hrs)

1.1 Kinds of Insect pests. Major pests, minor pests, sporadic pests, endemic pests, exotic pests, seasonal pests, occasional pests, regular pests, persistant pests.

#### **Unit 2 Causes of Pest Outbreak**

(8 hrs)

2.1 Deforestation, Destruction of natural enemies pest resurgence.

- 2.2 Secondary pest outbreak Intensive and extensive cultivation, Intriduction of new crops, new varieties, hybrid varieties, cultural practices, change in agriculturall practices-introduction of new pests.
- 2.3 Forecasting pest outbreaks and surveillance, short term and long term forecasting-Forecasting based on observations- Climatic and empirical factors.

# **Unit 3 Biology of Pest Insects.**

(20 hrs)

- 3.1 Biology, nature of damage and control of major pests of major crops. Paddy, coconut, vegetables, Pulses, coffee, tea, sugarcane, banana, tapioca, cashew, pepper, cardamom and stored products.
- 3.2 Insect pests of domestic animals, biology and control.
- 3.3 Biology of major arthropod vectors of human diseases belonging to Diptera, Anoplura, Siphonoptera-control of vectors.
- 3.4 House hold Pest Insects-Biology and control.

### **Unit 4 Industrial Entomology**

(12 hrs)

- 4.1 Silkworm Technology-Sericulture
- 4.2 Honey bee-Apiculture
- 4.3 Lac-Insect-Lac culture.
- 4.4 Insects as human food and as scavengers.

#### **Unit 5 Principles of Insect Control**

(15 hrs)

- 5.1 Basic principles of Insect control, prophylactic methods, curative or direct methods.
- 5.2 Biological control-Brief history, theory behind classical biological control, Agents of biological control-Parasites and parasitoids, predators pathogenic micro organisms (Bacteria, fungi and viruses)
- 5.3 The practice of biological control-phases-conservation, Importation and colonizationmass culture and release of natural enemies.
- 5.4 Economic dimensions of biological control merits and demerits.
- 5.5 Important biological control projects undertaken in India against insect pests and weeds.

5.6 Important concepts relevant to the search for exotic beneficial insects (amenability of pests, pests and natural enemy associations in native home, climate similarities)

# **Unit 6 Insect Toxicology**

(15 hrs)

- 6.1 Chemical control-Inorganic and organic pesticides, pesticides of plant origin, chemosterilants, insecticide residues, insecticide formulations, appliances, fumigation& fumigants.
- 6.2 Principles of behavioural control-Pheromonal considerations-Communication pheromone, sex pheromone-aggregation pheromones-orientation theories use of other chemicals-repellents-plant allomones-Antifeedants, Integration of behaviours modification with other tactics.

# **Unit 7 Pest Management**

(15 hrs)

- 7.1 Concepts of pest management, definition, characteristics of pest management, pest management strategies and techniques.
- 7.2 Integrated Pest Management (IPM)-definition; IPM in Agro ecosystems, preventive practice, Therapeutic practice, selection of tactics, Integration of tactics.
- 7.3 Ecological Management of the Crop environment-
  - 7.3.1 Reducing average favourability of ecosystem,
  - 7.3.2 Disrupting continuity of pest requisites
  - 7.3.3 Diverting Pest populations away from crop
  - 7.3.4 Reducing the impact of insect injury.
- 7.4 Ecological back lash and its management-resistance of populations to pest management- tactics, Pest population resurgences and replacement-enhanced microbial degradation, upsets in community balance.

#### **Unit 8 Insecticide Resistance**

(10 hrs)

- 8.1 Genetic, physiological and biochemical mechanisms.
- 8.2 Insecticide metabolism-microsomal & extramicrosomal
- 8.3 Dynamics of environmental pollution by insecticides Its impact in the biosphere.
- 8.4 Insecticide poisoning, biological magnification, health hazards, silent spring (Rachel Carson)

#### References

- 1. D.S.Gill.Economic Importance of Insects
- 2. C.L.Metcalf and V.P.Flint Distructive and useful Insects
- 3. T.V.Ramakrishna Iyyar. Handbook of economic entomology for south India
- 4. Krishnaveni. Sericulture Manual part 1,II&III
- 5. H.E. Mammel. Techniques in Pheromone Research
- 6. Philip House et.al. Insect pheromones and their uses in Pest management
- 7. G.K. Veeresh and D, Rajagopal. Applied soil zoology and Ecology
- 8. David Dent. Integrated Pest Management.
- 9 John.R. Ruberon. Hand book of Pest Management.
- 10. Ran den Bosch and Messenger. Biological control
- 11. D.B. Tembhara. Modern Entomology
- 12. Cedric Gillot. Entomology
- 13. Hill d.S. Insect pests of Agriculture and their control
- 14. O'Brien, R.D. Insecticide\_Action and metabolism, Academic Press.NY
- 15. Wilkinson.C,.F.Insecticide Biochemistry and physiology, Plenum Press.N.Y.
- 16. Brown, AWA, Ecology of pesticides-John Wiley Sons, -New York.
- 17. Edwards, C.A.Persistne Pesticides-John Wiley Sons,-New York.
- 18. O'Brien, R.D&Yamanota I, Biochemical Toxicology of Insecticies-1970 Academic Press Inc, London.
- 19. Haward, R.F.&James, 1979,M.T.Entomology in Human and animal health mc millan pblg. london.
- 20 Metcalf, R.L.&Lluckmman, W.H.Introduction to insect pest management. John Wiley & sons.
- 21. Ghosh.M.R., (1989) Concepts of Insect control.Wiky, Eastern Ltd., Banglore& New Delhi
- 22. Apple, J L& R R Smith, Integrated Pest management Plennum press, New york.
- 23. Kilgore W W and R L Doubt, Pest control-Acd. Press
- 24. Larry P. Pedigo (1996) Entomology and pest management Prentice Hall India Pvt.Ltd., New Delhi.
- 25. Debach P. Biological control of Insect pests& Weeds. Chapman&Hall
- 26. Kilgour, NW & RL Douff, Pest control. Acad. Press.

27. Rao V.P. Chani M.a. Sankaran, T. and K.C. Mathur, A review of Biological control of Insects& other pests in south east Asia and the Pacific Region, C A B, England.

# **Semester IV**

**Special Subject: Insect Science** 

# Practical I

Zo243 (Taxonomy, Anatomy Histology and Physiology)

# Taxonomy

- 1. Identification and preparation of taxonomic key of 10 insects belonging to 10 families and 4 orders.
- 2. Collection, preservation and presentation and insects belonging to 30 families
- 3. Mounting, sketching and labeling of taxonomic features of the following.
  - a) Wings in insects of 5 orders

- b) Antennae in insects of 5 orders
- c) Mouthparts in insects- 4 types
- d) Legs-4 types

# Anatomy & Histology

#### 1. Dissection

- 1.1 Alimentary canal and associated glands of 4 groups of Insects with different feeding habits.
- 1.2 Reproductive system of any two female insects
- 1.3 Nervous system in any two groups
- 1.4 Stomatogastric Nervous system (Oesophageal, sympathetic, single recurrent nerve and paired recurrent nervous)
- 1.5 Endocrine system
- 1.6 Identification of sensilla employing a suitable staining technique.

# 2. Histology

- 2.1 Preparation of paraffin sections of insect midgut epithelium and ovary using Haematoxylin-eosin staining technique to demonstrate histological details.
- 2.2 Whole mount staining preparation of insect brain to demonstrate neurosecretory cells by PAVB technique.

# Physiology

- 1. Quantification of proteins in fat body/haemolymph
- 2. Quantification of glycogen in fat body.
- 3. Demonstration of malpighian tubule activity using dyes neutral red/indigo carmine.
- 4. Identification of at least two free aminoacids inhaemolymph by paper chromatography
- 5. Quantitative estimation of any two digestive enzymes (Protease/amylase/Invertase)
- 6. Haemolymph protein profile employing PAGE
- 7. Identification haemocytes using Giemsa/Wright's/BPS stain.

NOTE: Candidates shall submit a collection consisting of 40 families of insects from different orders (It shall include dry collection, wet collection and slides including life stages) The collection shall be submitted at the time of practical examination along with practical record.

#### Practical II

# Zo244 (Ecology, Economic Entomology and Experimental Entomology)

# **Ecology**

- 1. Methods of collection and identification of soil insects (any ten numbers)
- 2. Field work: A field study shall be conducted to observe the insects in their natural habitat. A detailed field report shall be submitted by each student which includes observation of insects in area such as forests, grass land, aquatic insects, sandy areas etc., The field report duly certified shall be submitted at the time of practical exam along with practical record.
- 3. Estimation of LC 50 value and LD 50 value of any two brands of insecticides for some aquatic/terrestrial organisms.

#### **Economic Entomology**

- 1. Collection, Preservation, identification and presentation of following categories of pests.
  - 1.1 Agricultural pests of different crops 10 numbers.
  - 1.2 Stored-Product pests-3 numbers.
  - 1.3 Vectors and veterinary pests-4 numbers
  - 1.4 House-hold pests 5 numbers
  - 1.5 Beneficial insects-6numbers.
- 2. Collected and identified insect specimens and pests of crops shall be submitted at the time of practical examination. Candidates shall submit a minimum of 15 wet collections.
- 3. Field study to collect/observe insect species of pollinators, parasitoids, predators, scavengers and weed killers.
- 4. Field study of various methods of pest management

Pesticide formulation

Pesticide application

Safety hazards & First aid.

# **Experimental Entomology**

- 1. Rearning of any two insects in the laboratory
- 2. Identification of Larval instars using Dyar's rule
- 3. Sexing of insects-Larva pupa and adult.
- 4. Effect of starvation on metamorphosis.
- 5. Demonstration of the following techniques.
  - a. Neck ligation
  - b. Extripation
  - c. Canterization
  - d. Ovariectomy

NOTE: Candidates shall submit a minimum of 15 numbers of different categories of pests at the time of practical examination along with the practical record. A duly certified field report also shall be submitted at the time of practical examination.

# **Semester IV**

**Special Subject: Environmental Physiology** 

Zo241: Pollution Biology & Environmental Physiology (100 Hrs)

Unit 1 Introduction (12 hrs)

- 1.1 Environmental pollution-Concepts and definitions
- 1.2 Environmental pollutants
  - 1.2.1 Organic pollutants
  - 1.2.2 Heavy metals, industrial effluents
  - 1.2.3 Pesticides
  - 1.2.4 Radioactive pollutants
  - 1.2.5 Oil, food additives and contaminants

| Unit 2  | Air Pol                                                                                       | llution                                                                                 | (15 hrs)      |
|---------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------|
| 2.1     | Chief a                                                                                       | Chief air pollutants-occurrence, sources and effects                                    |               |
| 2.2     | Interaction of air pollutants in the atmosphere-Photochemical reactions-Formation and         |                                                                                         |               |
|         | effects                                                                                       | of secondary pollutants and photochemical smog.                                         |               |
| 2.3     | Effects of air pollutants on materials, building metals, vegetation and human health; a brief |                                                                                         |               |
|         | survey                                                                                        | of major air pollution episodes                                                         |               |
| 2.4     | Air poll                                                                                      | Air pollution abatement technologies – Design and working of bag filters, electrostatic |               |
| Unit 3  | Noise <sub> </sub>                                                                            | oise pollution (5 hrs)                                                                  |               |
| 3.1     | Sources                                                                                       |                                                                                         |               |
| 3.2     | Effect of                                                                                     | Effect of noise pollution on materials, animals and humans.                             |               |
| 3.3     | Sonic b                                                                                       | Sonic boom.                                                                             |               |
| 3.4     | Abatement strategies                                                                          |                                                                                         |               |
| Unit 4  | Water                                                                                         | Water pollution (6 hrs)                                                                 |               |
| 4.1     | Organic pollution                                                                             |                                                                                         |               |
| 4.1     | 1                                                                                             | Origin and sources of organic pollutants – Biodegradable and non-                       |               |
|         |                                                                                               | biodegradable; Domestic, agricultural and industrial sources                            |               |
|         | 4.1.2                                                                                         | Biochemical Oxygen Demand (BOD)                                                         |               |
|         | 4.1.3                                                                                         | Chemical Oxygen Demand (COD) – Importance and method of estimation                      | on.           |
|         | 4.1.4                                                                                         | Effects of organic pollution on aquatic systems                                         |               |
|         | 4.1.5                                                                                         | Eutrophication – Sources and effects.                                                   |               |
|         | 4.1.6                                                                                         | Biocides, fungicides and herbicides -                                                   |               |
|         |                                                                                               | Sources and effects                                                                     |               |
|         | 4.1.7                                                                                         | Biomagnifications: Toxic effects on non-target organisms and hazards to                 | o man.        |
| 4.2 Inc | lustrial <sub>l</sub>                                                                         | pollution                                                                               |               |
| 4.2     | .1                                                                                            | Heavy metals-Effects of various heavy metals (such as Hg, Pb, Cd, As, Cr                | , Zn, etc) in |
| the     | 2                                                                                             |                                                                                         |               |
|         |                                                                                               | ecosystem and human population                                                          |               |
| 4.2     | .2                                                                                            | Fluoride pollution on human life                                                        |               |

Thermal pollution-sources, effects and control.

Oil spills-sources, effects and control.

4.2.3

4.2.4

#### 4.3 Water pollution abatement technology

(10 hrs)

- 4.3.1 Primary, Secondary and tertiary treatment systems
- 4.3.2 Design and operations of screens, frit chambers, sedimentation tanks and oxidation ponds.
- 4.3.3 Design and operations of biological treatment systems like aerated lagoons, activated sludge process, trickling filters and sludge digestion

#### Unit 5 Radioactive Pollution

(10 hrs)

- 5.1 Sources of nuclear radiation
- 5.2 Biological effects of ionizing radiations and non-ionizing radiations.
- 5.3 Nuclear waste disposal

#### **Unit 6 Terrestrial Pollution**

(12 hrs)

- 6.1 Solid wastes and disposal (garbage, ashes, rubbish, street litter, agricultural waste, mining waste and industrial wastes).
- 6.2 Strategies for control of solid waste pollution

#### **Unit 7 Environmental Physiology**

(32 hrs)

# 7.1 Temperature adaptations

7.1.1 Morphological and physiological adaptations:

Relation between body size and metabolic rate. Temperature and metabolic rate: Thermal acclimation; Enzymatic acclimation;

- 7.1.2 Temperature classifications of animals-Homoiotherms and Poikilotherms;
- 7.1.3 Thermal migration
- 7.1.4 Implications of global warming on animals.

# 7.2 Pressure adaptations

- 7.2.1 Adaptations to hyper baric stress with particular reference to deep sea organisms.
- 7.2.2 Biochemical mechanisms of animals to high altitudes (hypo aria and hypoxia)

#### 7.3 Osmoregulation and ionic regulation

- 7.3.1 Osmoregulation in fresh water, marine estuarine and terrestrial animals
- 7.3.2 Sodium pump Na<sup>+</sup> and K<sup>+</sup>ATPase in relation to salinity adaptations.

#### 7.4 Eco-physiological adaptations

- 7.4.1 Mimicry and colouration
- 7.4.2 Echolocation
- 7.4.3 Bio-luminescence
- 7.4.4 Electric organs.

#### References

- 1. Enger E.D. and Smith B.F. (2004) Environmental Science. Mc Graw Hill Higher Education.
- 2. J.L Chapman and M.J. Resis (1999), Ecology Principles and Applications. Cambridge University Press.
- 3. Abbasi, S.A. And Ramaswamy, e.V (1999) Biotechnological Methods of Pollution Control. Oxford University Press, Hyderabad
- 4. Atchia.M. and Tropp.S.(1995) Environmental Management, John Wiley & Sons.
- 5. Barthlott, W. and Winiger, M. (1998), Biodiversity. Springer Verlag, Berlin.
- 6. Bishop.P.L. (2000), Pollution Prevention: Fundamentals and Practice, Mc.Graw-Hill Pub.
- 7. Aneja, K.R.(2000) Experiments in microbiology Plant Pathology, Tissue culture and Mushroom cultivation. Wishwa Prakashan, New Delhi.
- 8. Cutter S.L. (1999) Environmental Risks and Hazards. Prentice Hall of India Pvt. Ltd., New Delhi.
- 9. Hary.M.F. (1990) standard Handbook of Hazardous Waste Treatment and Disposal. McGraw-Hill.
- 10. Houghton, J. (1999), Global Warming, Cambridge University Press.
- 11. Lamboj.N.S. (1999) control of Noise Pollution Deep & Deep Publishers.
- 12. Kluge, H. Bittner, A and Hohnholz.J.H.(1995) Environment Management, Institute of Scientific Co-operation, Tubinlen, Germany.
- 13. Morris. and Therivel, R. (1995). Methods of Environmental Impact Assessment. UCL Press, London.
- 14. Owen, K.L.and Unwin, T. (1997) Environment Management, Blackwell Publishers.
- 15. Park, C. (1997), The Environment-Principles and Applications Routledge, London.
- 16. Rao, M.N. and Rao, N.V.N. (1997) Air Pollution. Tata Mc Graw-Hill Pub. Co. Ltd.
- 17. Schwab, G.O. Gangmeirr, D.D. and Elliot, W.J. (1996), Soil and Water Management Systms, John Wiley & Sons.
- 18. Scragg.A. (1999). Environmental Biotechnology, ELBS.
- 19. Seragegom (1999). Biotechnology and Biosafety. World Bank, Washington D.C.
- 20. Sharma, B, K. and Kaur. H. (1996), Water Pollution, GOEL Publishing House Meerut.

- 21. Sharma, B.K. and Kaur, H. (1994). Environmental Pollution. GOEI Publishing House, Meerut.
- 22. Singh, B.P. et al.(1988) Environment and Biotechnology. Today and Tomorrow printers, New Delhi.
- 23. Siva V. (1992), Biotechnology and Environment, Third World Network, Malaysia.
- 24. Trivedi, P.R. (2000), Global Biodiversity, Authors Press.
- 25. Wentz (1998). Hazardous Waste Management (2<sup>nd</sup> Edn) Mc Graw-Hill pub.
- 26. Wood.C. (1997). Environmental Impact Assessment. Longman.
- 27. Yogendra. N. and Srivasantha (1995). Environmental Pollution. Ashish Publishing House, New Delhi.
- 28. S. Charles Kendeigh, (1980) Ecology with special reference to Animals and Man, Prentice-Hall of India Pvt. Limited.
- 29. N.K. Uberoi, (1999) Environmental Management, Excel Books.
- 30. Biswarup Mukherjee, 1997, Environmental Biology, Tata Mc Graw-Hill.
- 31. Abbasi, S.A. (1998) Environmental Pollution and its Control. Cognent International, Pondicherry.

# Zo242 Environmental Management Total Hours: 100

# Unit 1 Resources of Earth

(15 hrs)

- 1.1 Renewable and non-renewable resources
  - 1.1.1 Forests, wild life, endangered species fisheries
  - 1.1.2 Fossil fuels, minerals-their over-exploitation for domestic, agricultural and industrial purposes.
  - 1.1.3 Water resources-protection of water shed, reclamation of sewage and waste and water management in India.
- 1.2 Conservation of natural resources
- 1.3 Remote sensing for resource management

# Unit 2 Human exploitation of earth's resources

(15 hrs)

2.1 Human interferences in ecosystems- consequences of over-exploitation 2.2 Brief account of weather modifications, desalination, artificial rain making, acid rain, green house effect and its consequences and destruction of ozone umbrella. **Unit 3 Biological Conservation and Management** (20 hrs) 3.1 Principles of conservation 3.2 Conservation and economic use of energy and energy audit 3.3 Ecological problems due to intensive aquaculture – importance trawling ban 3.4 Conservation of wild life-present status and strategies of conservation 3.5 Deforestation and its consequences-need for scientific management and conservation of forests. 3.6 Biodiversity in India-Biodiversity conservation-in situ and ex-situ methods. 3.7 Biodiversity registering and patenting of biodiversity. Unit 4 Environmental Policy and Education (15 hrs) 4.1 Environmental policy-social, economic and legal aspects 4.2 Environmental laws and their enforcement 4.3 Environmental awareness-role of Government, media and voluntary organizations Unit 5 Environmental Impact Assessment and Sustainable Development (15 hrs) 5.1 Environmental Impact Assessment (EIA) 5.1.1 Definition, aim, principles and concepts of EIA 5.1.2 Elements of environmental impacts 5.1.3 Methods for preparing EIA-Check list method, Werner-Prestroit study 5.1.4 EIA Process making inventories, sampling and data processing, impact prediction and stimulation. 5.2 Sustainable Development 5.2.1 Concepts and dimensions 5.2.2 Basic needs 5.2.3 Unavoidable impacts and imperatives relating to sustainable development. 5.2.4 Alternative strategies Unit 6 Environmental Biotechnology (20 hours)

# 6.1.1 Sewage treatment

Pollution abatement using microbes

6.1

- 6.1.2 Solid waste disposal
- 6.2 Soil enrichment by using microbes
- 6.3 Genetic engineering of nitrogenose gene ('nif' genes) and nodulation genes.
- 6.4 Microbial insecticides
  - 6.4.1 Insecticidal toxin of Bacillus thuringiensis and genes) and nodulation genes.
  - 6.4.2 Baculoviruses as biocontrol agents and their genetic engineering for improved biocontrol.

#### References

- 1. J.L. Chapman and M.J. Reiss (1999). Ecology-Principles and Applications. Cambridge Univ Press.
- Abbasi, S.A. And Ramaswamy, E.V. (1999) Biotechnological Methods of Pollution Control.
   Oxford University Press, Hyderabad.
- 3. Atchia.M. and Troop. S. (1995) Environmental Management, John Wiley & Sons.
- 4. Barthlott, W. and Winiger, M. (1998), Biodiversity. Springer Verlag, Berlin.
- 5. Bishop.P.L.(2000), Pollution Prevention: Fundamentals and Practice, Mc.Graw-Hill Pub.
- 6. Aneja, K.R. (2000) Experiments in microbiology Plant Pathology, Tissue culture and Mushroom cultivation. Wishwa Prakashan, New Delhi.
- 7. Cutter S.L. (1999) Environmental Risks and Hazards. Prentice Hall of India Pvt. Ltd., New Delhi.
- 8. Hary. M.F. (1990) standard Handbook of Hazardous Waste Treatment and Disposal. McGraw Hill.
- 9. Houghton, J. (1999), Global Warming, Cambridge University Press.
- 10. Kamboj. N.S. (1999) control of Noise Pollution Deep& Deep Publishers.
- 11. Kluge, H. Bittner, A and Hohnholz. J. H. (1995) Environment Management, Institute of Scientific Co-operation, Tubinlen, Germany.
- 12. Morris, P. and Therivel, R. (1995). Methods of Environmental Impact Assessment. UCL Press, London.
- 13. Owen, K.L. and Unwin, T. (1997) Environmental Management, Blackwell Publishers.
- 14. Park, C. (1997), The Environment-Principles and Applications Routledge, London.
- 15. Tao, M.N. and Rao, N.V.N. (1997) Air Pollution. Tata McGraw-Hill Pub.Co.Ltd.
- 16. Schwab, G.O. Fangemeirr, D. & Elliot, W.J. (1996), Soil & Water Management Systems, John Wiley.
- 17. Scragg. A. (1999). Environmental Biotechnology, ELBS.
- 18. Sellers, B.H. (1984), Population of our Atmosphere, Adam Hilger Ltd., Bristol.
- 19. Seragelglin (1999). Biotechnology and Biosafety. World Bank, Washington D.C.
- 20. Sharma, B.K. and Kaur. H. (1996), Water Pollution, GOEL Publishing House, Meerut.
- 21. Sharma, B.K. and kaur, H. (1994). Environmental Pollution. GOEI Publishing House, Meerut.

- 22. Singh, B.P. et.al. (1988), Environment and Biotechnology. Today and Tomorrow printers, Delhi.
- 23. Siva.V. (1992), Biotechnology and Environment, Third World Network, Malaysia.
- 24. Trivedi, P.R. (2000), Global Biodiversity, Authors Press.
- 25. Wntz (1998). Hazardous Waste Management (2<sup>nd</sup> Edn.) Mc Graw-Hill pub.
- 26. Wood. C. (1997). Environmental Impact Assessment. Longman.
- 27. Yogendra.N. and Srivasantha (1995). Environmental Pollution, Ashish Publishing House, New Delhi.
- 28. Glick B.R. and Pasternak, J.J. (2000) Molecular Biotechnology ASM Press, Washington, DC
- 30. S. Charles Kendeigh, (1980) Ecology with special reference to Animals and Man, Prentice-Hall of India Pvt. Limited.
- 31. N.K. Uberoi, (1999) Environmental Management, Excel Books.
- 32. Biswarup Mukherjee, 1997, Environmental Biology, Tata Mc Graw-Hill publishing Company Limited.
- 33. Abbasi, S.A. (1998) Environmental Pollution and its Control. Cogent International, Pondicherry.

#### Semester IV

Special Subject: Environmental Biology

# Practical 1 ZO 243 Pollution Biology & Environmental Physiology

(10 Practicals to be carried out)

- 1. Analysis of soil texture using micrometry.
- 2. Determination of moisture content of soil.
- 3. Determination of soil pH (different soil samples)
- 4. Determination of organic carbon.
- 5. Determination of porosity/water retaining capacity of soil
- 6. Determination of chlorine in water.
- 7. Determination of H<sub>2</sub>S in water
- 8. Determination of Ammonia in water
- 9. Short term biossays and determination of LC50 of fish exposed to a given pollutant.
- 10. Effect of soil pollution on the population of earthworks.

- 11. Study of indicator organisms.
- 12. Effect of population on the Oxygen consumption of fishes.
- 13. Temperature/pH preferences of fishes.
- 14. Field work-Students are expected to make a field study on the problem of environmental pollution in their area.

*Note*: The students should submit the field study report at the time of examination.

# **Practical II ZO 244 Environmental Management**

(10 practicals to be carried out)

- 1. Determination of pH of water
- 2. Determination of electrical conductivity of water
- 3. Determination of turbidity of water
- 4. Determination of salinity of water
- 5. Determination of hardness of water
- 6. Determination of BOD and COD of polluted water.
- 7. Estimation of BOD and COD of polluted water.
- 8. Instrumentation: Principles, use and working of the following instruments.
  - 8.1 pH meter
  - 8.2 Electrical conductivity meter.
  - 8.3 Flame photometer
  - 8.4 Hygroscopic soil thermometer.

- 9. Estimation of primary productivity (Chlorophyll method)
- 10. Estimation of secondary productivity
- 11. Construction of pyramids of numbers and biomass from a pond collection.
- 12. Species diversity estimation with reference to a fresh water pond/soil.